
Finding fixed points faster
Michael Arntzenius

University of Birmingham

daekharel@gmail.com

Abstract
I propose to talk about work-in-progress on generalising

the classic Datalog optimisation seminaïve evaluation to the

higher-order functional language Datafun.

1 Introduction
Functional programmers have learned to emulate logic pro-

gramming using the effect of nondeterminism, usually imple-

mented as backtracking. However, backtracking search is of-

ten inefficient; logic programmers have explored other useful

strategies. Datalog [7] takes an extreme approach, allowing

only predicates with finite extent. This allows bottom-up

evaluation, which easily handles queries (such as transitive

closure) that are inefficient to solve by brute-force search.

Datafun [2] shows that higher-order functional programs

can emulate Datalog using a bottom-up nondeterminism ef-
fect (a finite set monad) combined withmonotone fixed points.
Here, we sketch the translation to Datafun of a classic Data-

log optimisation, seminaïve evaluation, which avoids need-

lessly re-deducing facts when evaluating a recursive predi-

cate.

Datalog folklore suggests seminaïve evaluation can be

understood in terms of derivatives [4, 5]; we substantiate

this by showing that its analogue in Datafun can be defined

by applying recent work by Cai et al. [6] on derivatives for

incremental computation in a higher-order setting.

2 Datalog, naïvely and seminaïvely
This simple Datalog program computes reachability in a

graph, given its edge relation:

path(X,Y) :- edge(X,Y).

path(X,Z) :- edge(X,Y), path(Y,Z).

A path is either an edge, or an edge followed by a path. But

how does Datalog find these paths? Let’s identify a predicate

with the set of argument-tuples it holds of. Then we can

compute path as the least fixed point of this function:

step path = {(x ,y) | (x ,y) ∈ edge}
∪ {(x , z) | (x ,y) ∈ edge, (y, z) ∈ path}

The naïve approach is to iterate the step function, com-

puting the sequence ∅, step1(∅), step2(∅), ... until it reaches
a fixed point stepk (∅) = stepk+1(∅). This works, but observe
that stepi (∅) ⊆ stepi+1(∅). This means we are doing redun-
dant computation — if step i appends an edge (x ,y) to a path
(y, z) to discover the path (x , z), step i + 1 re-discovers it the

A,B ::= bool | {A} | A → B | A ⇒ B
e ::= λx . e | e1 e2 | {®e} | e1 ∪ e2 |

⋃
(x ∈ e1) e2

fix e | when (e1) e2 | if e1 then e2 else e3

Figure 1. A fragment of Datafun

same way. We really want to compute the change between
iterations:

path = iterate ∅ edge
iterate x dx = if dx ⊆ x then x else

loop (x ∪ dx) (δstep dx)
δstep dpaths = {(x , z) | (x ,y) ∈ edge, (y, z) ∈ dpaths}

In Datalog, it’s long been known how to safely approxi-

mate this change using a static transformation on Datalog

rules (we omit its definition for space reasons); this is known

as seminaïve evaluation [4, 5].

3 Datafun, naïvely
You’ve actually already seen some Datafun code: the step
function in section 2! Datafun is a typed higher-order func-

tional language equipped with a finite set monad, which sup-

ports set-comprehension syntax sugar in the usual way [8].

Like Datalog, Datafun is total: all programs terminate.

Figure 1 gives the fragment of Datafun we consider here.

For the full language, see Arntzenius and Krishnaswami [2].

We write monadic bind

⋃
(x ∈ e1) e2, meaning “the union of

the sets e2 for each x ∈ e1”. Datafun can also compute fixed
points of functions on finite sets, fix f .1

To ensure fix f terminates, f must be (among other things)

monotone (x ⊆ y implies f x ⊆ f y), so Datafun’s type

system tracks monotonicity of functions and expressions.

The type A ⇒ B represents monotone functions, a subtype

of all functions A → B. The expression when (e1) e2 yields
the set e2 if e1 is true, and ∅ otherwise; unlike if, this is always
monotone in e1.
As we’ve seen, Datalog programs can be expressed us-

ing a combination of set operations and fixed points. For

example, path is (fix step). However, the seminaïve evalua-

tion transformation, formulated on Datalog, does not handle

higher-order functions. Can we lift this limitation?

4 Derivatives for Datafun
Naïve evaluation iterates a function f . Seminaïve evaluation

approximates the change between iterations — how does

1
The full language generalizes both monadic bind and fixed points to semi-
lattice types; for simplicity we here consider only finite sets.

∆bool = bool
∆{A} = {A}

∆(A → B) = A → ∆A → ∆B
∆(A ⇒ B) = A → ∆A ⇒ ∆B

δx = dx
δ (λx . e) = λx . λdx . δe
δ (e1 e2) = δe1 e2 δe2

δ {®e} = ∅

δ (e1 ∪ e2) = δe1 ∪ δe2
δ (
⋃
(x ∈ e1) e2) =

⋃
(x ∈ δe1) e2

∪
⋃
(x ∈ e1 ∪ δe1) [0x/dx]δe2

δ (fix f) = fix (δf (fix f))
δ (if e then e1 else e2) = if e then δe1 else δe2

δ (when (e1) e2) = if e1 then δe2 else
when (δe1) e2 ∪ δe2

Figure 2. Derivatives for a fragment of Datafun

f (x) change as x goes from f i (∅) to f i+1(∅)? To answer this
question for Datafun, we build on the incremental λ-calculus
of Cai et al. [6], which shows how to compute the change

to a function’s result given a change to its input. Here we

summarize their approach and how we apply it to Datafun.

To capture what change means, we assign to every type

A a change structure (∆A, ⊕, 0).2 The type ∆A represents

changes to values of type A. Since the steps of a fixed point

computation increase monotonically, we need only represent

increasing changes. The function ⊕ : A → ∆A → A applies a

change to a value. Finally, 0 : A → ∆A gives a zero change
such that x ⊕ 0x = x .

In fig. 2 we give a transformation from an expression e : A
to its derivative δe : ∆A, which computes how e changes

as its free variables change. By convention, the change to a

variable xi : Ai is given by a variable named dxi : ∆Ai .

For our purpose, the most important change structures

are those on finite sets and on functions. Sets are ordered by

inclusion, so increasing a set means is simply it with a set of

added elements. Thus ∆{A} = {A}, ⊕ = ∪, and 0x = ∅.

Putting monotonicity aside, the change type for functions

is ∆(A → B) = A → ∆A → ∆B. Why not simply A → ∆B?
Because in the derivative of function application δ (e1 e2), it
isn’t only the function that may change, but its argument!

4.1 How to compute fixed points faster
We promised an analogue of seminaïve evaluation — a way

to find fixed points faster. How do derivatives help us? Well,

given fix f , the expression δf x dx tells us how f changes

as its argument x changes to x ∪ dx . This is exactly what

we need: to compute the change between steps in our fixed

2
Cai et al. also include an operator ⊖ fromwhich 0 is derived; our restriction
to just 0 is suggested by Atkey [3].

fix f = naïvef ∅ (f ∅)
naïvef x next = if x = next then x else

naïvef next (f next)

fix f = seminaïvef ∅ (f ∅)
seminaïvef x dx = if dx ⊆ x then x else

seminaïvef (x ∪ dx) (δf x dx)

Figure 3. Naïve and seminaïve fixed point computation

point iteration. We give the naïve and seminaïve algorithms

for computing fixed points in fig. 3.

4.2 Defining δ (fix f)

The definition of δ (fix f) in fig. 2 may seem a little mysteri-

ous. However, it’s easy to show that δ (fix f) must be a fixed

point of δf (fix f):

δ (fix f) = δ (f (fix f)) expand fixed point

= δf (fix f) δ (fix f) rule for δ (e1 e2)

Which suggests the following motto:

the derivative of a fixed point

is the fixed point of its derivative.

This is so beautiful it must be true. Nevertheless, we have

proven it correct [1].

5 Contributions
Our main contributions are:

1. Generalising seminaïve evaluation to a higher-order

functional language, Datafun, giving an optimisation

for finding fixed points faster.

2. Substantiating folklore that seminaïve evaluation can

be understood in terms of derivatives.

3. Extending the work of Cai et al. [6] to handle a finite

set monad, fixed points, and interaction with mono-

tonicity.

References
[1] M. Arntzenius. δ (fix f) = fix(δ f (fix f)): or, static differentiation of

monotone fixed points. http://www.rntz.net/files/fixderiv.pdf, May 2017.

Accessed: 7 June 2018.

[2] M. Arntzenius and N. R. Krishnaswami. Datafun: A functional Datalog.

In Proceedings of the 21st ACM SIGPLAN International Conference on
Functional Programming, ICFP 2016, pages 214–227, New York, NY, USA,

2016. ACM. ISBN 978-1-4503-4219-3. doi: 10.1145/2951913.2951948. URL

http://doi.acm.org/10.1145/2951913.2951948.
[3] R. Atkey. The incremental λ-calculus and re-

lational parametricity. https://bentnib.org/posts/
2015-04-23-incremental-lambda-calculus-and-parametricity.html,
April 2015. Accessed: 7 June 2018.

[4] F. Bancilhon. Naive evaluation of recursively defined relations. In

On Knowledge Base Management Systems (Islamorada), pages 165–178,
1985.

2

http://www.rntz.net/files/fixderiv.pdf
http://doi.acm.org/10.1145/2951913.2951948
https://bentnib.org/posts/2015-04-23-incremental-lambda-calculus-and-parametricity.html
https://bentnib.org/posts/2015-04-23-incremental-lambda-calculus-and-parametricity.html

[5] F. Bancilhon and R. Ramakrishnan. An amateur’s introduction to re-

cursive query processing strategies. In C. Zaniolo, editor, Proceedings
of the 1986 ACM SIGMOD International Conference on Management of
Data, Washington, D.C., May 28-30, 1986., pages 16–52. ACM Press, 1986.

doi: 10.1145/16894.16859. URL http://doi.acm.org/10.1145/16894.16859.
[6] Y. Cai, P. G. Giarrusso, T. Rendel, and K. Ostermann. A theory of

changes for higher-order languages: incrementalizing λ-calculi by static
differentiation. InM. F. P. O’Boyle and K. Pingali, editors,ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’14, Edinburgh, United Kingdom - June 09 - 11, 2014, pages 145–155.
ACM, 2014. ISBN 978-1-4503-2784-8. doi: 10.1145/2594291.2594304.

URL http://doi.acm.org/10.1145/2594291.2594304.
[7] H. Gallaire and J. Minker, editors. Logic and Data Bases, Symposium on

Logic and Data Bases, Centre d’études et de recherches de Toulouse, 1977,
Advances in Data Base Theory, New York, 1978. Plemum Press. ISBN

0-306-40060-X.

[8] P. Wadler. Comprehending monads. Mathematical Structures in Com-
puter Science, 2(4):461–493, 1992. doi: 10.1017/S0960129500001560. URL
https://doi.org/10.1017/S0960129500001560.

3

http://doi.acm.org/10.1145/16894.16859
http://doi.acm.org/10.1145/2594291.2594304
https://doi.org/10.1017/S0960129500001560

	Abstract
	1 Introduction
	2 Datalog, naïvely and seminaïvely
	3 Datafun, naïvely
	4 Derivatives for Datafun
	4.1 How to compute fixed points faster
	4.2 Defining d(fix f)

	5 Contributions
	References

