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Abstract

The deductive query language Datalog has found a wide array of uses, including static analy-
sis (Smaragdakis and Bravenboer, 2010), business analytics (Aref et al., 2015), and distributed
programming (Alvaro et al., 2010, 2011). Datalog is high-level and declarative, but simple
and well-studied enough to admit efficient implementation strategies. For example, Whaley
et al. found they could replace a hand-tuned C implementation of context-sensitive pointer
analysis with a comparably-performing Datalog program that was 100x smaller (Whaley and
Lam, 2004; Whaley et al., 2005).

However, Datalog’s semantics are not stable under extensions. For instance, adding
arithmetic operations breaks Datalog’s termination guarantee. Despite this, nearly all practical
implementations extend Datalog beyond its theoretical core to add niceties such as arithmetic,
datatypes, aggregations, and so on. Moreover, pure Datalog cannot abstract over repeated
code: one may express a static analysis over a particular program, but to express the same
analysis over multiple programs, one must duplicate the analysis code for each program
analyzed.

This thesis deconstructs Datalog from a categorical and type theoretic perspective to
determine what makes it tick. Datalog’s semantic guarantees are provided by brute syntactic
restrictions, such as stratification and the absence of function symbols. In place of these,
we find compositional semantic properties such as monotonicity, which we capture using
types. We show that this permits integrating Datalog’s features with those of typed functional
languages, such as algebraic data types and higher order functions.

In particular, this thesis makes the following contributions:

1. We define and expound the semantics and metatheory of Datafun, a pure and total
higher-order typed functional language capturing the essence of Datalog. Where Data-
log has predicates defined by a restricted class of Horn clauses, Datafun has finite sets
and set comprehensions; Datalog’s bottom-up recursive queries become iterative fixed
points; and Datalog’s stratification condition becomes a matter of tracking monotonicity
with types.

2. We show how to generalize seminaïve evaluation to handle higher-order functions.
Seminaïve evaluation is a technique from the Datalog literature which improves the
performance of Datalog’s most distinctive feature: recursive queries. These are com-
puted iteratively, and under a naïve evaluation strategy, each iteration recomputes all
previous values. Seminaïve evaluation computes a safe approximation of the difference
between iterations. This can asymptotically improve the performance of Datalog queries.
Seminaïve evaluation is defined partly as a program transformation and partly as a
modified iteration strategy, and takes advantage of the first-order nature of Datalog.
We extend this transformation to handle higher-order programs written in Datafun.

3. In the process of generalizing seminaïve evaluation, we uncover a theory of incremental,
monotone, higher-order computation, in which values change over time by growing
larger, and programs respond incrementally to these increases.
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Chapter 1

Introduction

1.1 Monotone fixed points
A remarkable number of computational problems can be expressed as finding the least fixed
point of a monotone map on a semilattice satisfying the ascending chain condition. The
utility of Datalog is explained by the fact that it captures this pattern, albeit restricted to the
semilattice of finite sets under union. To understand this pattern better, let’s consider three
examples of increasing complexity: (1) reachability in a graph; (2) single-source shortest
paths; and (3) analyzing which variable assignments may reach a given line in a simple
imperative program (called “reaching definitions”).

Reachability Consider a graph and suppose we wish to find all nodes reachable from some
designated start node. We proceed as follows: first, we put a check mark next to the start
node; then, repeatedly, we pick a node and put a check next to it if any of its neighbors
is checked. Once there are no nodes which we can mark this way – in particular, when
there are no edges between checked and unchecked nodes – we are done; the reachable
nodes are exactly the checked nodes.

Shortest paths Now suppose each edge e in the graph has an associated non-negative
length de, and we wish to find the minimum distance to each reachable node. We use a
small modification of the previous procedure: instead of a check mark, we annotate nodes
v with the length dv of the shortest path to them we’ve discovered so far. Initially we
mark the start node with 0 and every other node with ∞ (representing “no known path”).
Then, whenever an edge provides a shorter path to a node, we update its annotation –
that is, for any edge v e−→ u we may update du := min(du, dv + de). Once no shortening
edges exist, the annotations dv cannot change, and we are done.1

Reaching definitions Finally, let’s consider something seemingly completely different: stat-
ically analyzing a simple imperative program (figure 1.1). In particular, we wish to
determine which assignments may reach a given program line; for example, the print
on line 2 will receive only the value of x assigned on line 1, while the print on line 4
may receive the values assigned on both lines 1 and 5.

1 The classic algorithm for single-source shortest paths, Dijkstra’s algorithm, can be seen as a version of the
algorithm we’ve described, but with a crucial optimization: it prioritizes which edges to consider next in a way
that guarantees it never needs to revisit a node.
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1 x := 0

2 print x

3 while true do

4 print x

5 x := x + 1

figure 1.1 Example program

We determine this by propagating information along the control flow graph of our
program. At each line we maintain a set of assignments (line-number/variable pairs) that
we know can reach that line. Each line collects the assignments from all lines that can
transfer control to it – usually the immediately preceding line, but loops and conditionals
complicate this. However, lines which assign to a variable add themselves to this set, and
discard other assignments to the same variable from incoming lines.

Once there is no line whose corresponding assignment-set is changing, the analysis is
finished. See figure 1.2 for a step-by-step diagram of this process.

How do these three examples fit into our proposed pattern: finding the least fixed point of a
monotone map on a semilattice satisfying the ascending chain condition? Let’s break down
each point in turn:

Fixed points In each example, we maintained some state – check marks or distance anno-
tations on nodes, sets of reaching assignments on lines – that changed over time, and we
terminated when there was no action we could take – no node, edge, or line we could
examine – which would change this state. In other words, we halted once our state was
fixed under our transition function.

Monotone Although our state changed over time, it did not change in arbitrary ways: there
was a direction to it. Nodes went from unchecked to checked; distances to nodes decreased;
and sets of reaching assignments grew. We can formalize this by giving our states a partial
order representing the direction they change as computation progresses and information
increases – an order with respect to which our state increases monotonically over time.

For example, in graph reachability a node’s state is a boolean flag; we’ll regard it as
true if the node is checked, false otherwise. Since nodes go from unchecked to checked
but not vice-versa, we say that false < true. In single-source shortest-path our distances
change toward zero, so we order them inversely, ∞ < . . . < 3 < 2 < 1 < 0. And in
reaching definitions our assignment-sets change by gaining new elements, so we order
them by the subset relation, s ⩽ t ⇐⇒ s ⊆ t.

Semilattices In each example, we had some way of combining information from multiple
sources. In graph reachability, we marked a node if any of its neighboring nodes were
marked; in shortest paths, when there were multiple edges/paths into a node, we took
the minimum among these competing options; and in reaching definitions, when a line
could receive control from multiple lines, we took the union of their reaching assignment
sets.

Not coincidentally, these operations – boolean disjunction, minimum, and union
respectively – are the least upper bound operators for the partial orders we imposed on
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reaching
assignments

1 x := 0 (x,1)

2 print x

3 while true do

4 print x

5 x := x + 1

step 1 The assignment on line 1 adds itself.

reaching
assignments

1 x := 0 (x,1)

2 print x (x,1)

3 while true do

4 print x

5 x := x + 1

step 2 Information propagates to line 2.

1 x := 0 (x,1)

2 print x (x,1)

3 while true do (x,1)

4 print x

5 x := x + 1

step 3 Information propagates to line 3.

1 x := 0 (x,1)

2 print x (x,1)

3 while true do (x,1)

4 print x (x,1)

5 x := x + 1

step 4 Information propagates to line 4.

1 x := 0 (x,1)

2 print x (x,1)

3 while true do (x,1)

4 print x (x,1)

5 x := x + 1 (x,5)

step 5 The assignment on line 5 adds itself,
discarding the assignment from line 1.

1 x := 0 (x,1)

2 print x (x,1)

3 while true do (x,1) (x,5)

4 print x (x,1)

5 x := x + 1 (x,5)

step 6 Information propagates from line 5
to line 3 because of the loop.

1 x := 0 (x,1)

2 print x (x,1)

3 while true do (x,1) (x,5)

4 print x (x,1) (x,5)

5 x := x + 1 (x,5)

step 7 Information propagates to line 4.

1 x := 0 (x,1)

2 print x (x,1)

3 while true do (x,1) (x,5)

4 print x (x,1) (x,5)

5 x := x + 1 (x,5)

step 8 No changes – done!

figure 1.2 Reaching definitions, step-by-step
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our states, making those partial orders into join-semilattices. In general, we write x ∨ y

for the least upper bound/semilattice join of x and y. If our partial order represents
the direction of increasing information, x ∨ y is a natural way to combine information:
it includes all information from (is greater than) both x and y, but does not jump to
unnecessary conclusions – it is the least, most conservative, upper bound.

Ascending chain condition Finally, in each case there was a limit on howmuch information
we could possibly learn, and thus how many transitions we could take. For instance, in
graph reachability, there were finitely many nodes, and each node could only transition
from unchecked to checked once. This argument can be formalized by showing our partial
order on states obeys the ascending chain condition (ACC), which asserts that there are
no infinite strictly ascending chains, x0 < x1 < x2 < . . . ; consequently, any process
producing an increasing state-sequence must halt. We leave it as an exercise for the reader
to convince themselves each of our state-posets satisfies this property.2

The essence of our computational pattern, then, is this: we follow rules which accumulate
information monotonically until there is nothing left to learn (a fixed point). We usually need a
way to combine information from multiple sources (our semilattice); and if we are to finish, we
cannot keep learning forever (the ascending chain condition). As this thesis progresses, we will
see more examples of this pattern and develop a more precise mathematical understanding
of what it consists in. To do this, it will help to examine a language which is at once an
instance of this pattern for us to deconstruct and a vehicle for expressing further instances of
it: Datalog.

1.2 Datalog
Datalog may be seen either as a restricted logic programming language or an expressive
database query language. To start with, we consider the former view, explaining Datalog in
terms of deduction. Here is a simple Datalog program:

parent(alice, bob).
parent(bob, charlie).
grandparent(X,Z)← parent(X, Y), parent(Y, Z).

We can see each line, or clause, of this program as an inference rule. The first two lines are
axioms, or inference rules with no premises; the last line is a rule with two premises. In
inference rule notation we might write this:

parent(alice, bob) parent(bob, charlie)
parent(X, Y) parent(Y, Z)

grandparent(X,Z)

More formally, a Datalog program is a sequence of clauses terminated by periods. Each clause
is an implication with one conclusion and an optional list of premises, written conclusion-first,
“B← A1, A2, ..., An.”; or if there are no premises, simply “B.”. The premises and conclusion

2 Although for simplicity’s sake we have presented our partial orders as ranging over booleans, distances, and
finite sets respectively, our states are actually maps from nodes or lines into booleans, distances, or finite sets.
Fortunately, if the domain is finite, maps into a poset satisfying ACC also satisfy ACC.
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are atoms of first-order logic: a predicate applied to a sequence of terms, P(T1, ..., Tn), or a
negation of the same, ¬P(T1, ..., Tn). Moreover, the conclusion of a clause must be positive,
not negated.

As is the convention when interpreting inference rules, in Datalog the variables in a clause
(for which we use capital lettersX, Y, Z) are considered to be universally quantified: the logical
interpretation of our third line, for example, is (∀X, Y, Z) parent(X, Y) ∧ parent(Y, Z) =⇒
grandparent(X,Z).

The intended interpretation of a Datalog program is the set of all facts deducible from its
clauses. We access this set via queries such as grandparent(alice, X), which asks for a list of all
X such that grandparent(alice, X) is deducible. In general we allow conjunctive queries: lists
of conjoined atoms, for instance the unlikely query parent(X, Y), parent(Y, X), which asks for
a pair of people each the parent of the other (or, in the case X = Y, a single person who is
their own parent). Finally, a query without any variables, such as grandparent(charlie, alice),
amounts to asking a yes-or-no question: is the query deducible or not?

Computing the set of all deducible facts fits neatly into our description of monotone fixed
points: applying inference rules is a monotone process, adding but never removing knowledge;
we desire the fixed point of this process, where everything that can be deduced has been; our
semilattice is sets of atoms under union. The ascending chain condition, however, does not
obviously hold – perhaps there are infinitely many deducible facts? To answer this question,
we must consider what differentiates Datalog from other logic programming languages.

1.2.1 Termination and recursion

Thus far our description of Datalog has not distinguished it from its ancestor Prolog; this
is because the difference lies not so much in their syntax as in their semantics. Without
further restrictions, whether a proposition is deducible from a collection of clauses is in
general undecidable. Prolog’s solution is to specify its proof search strategy. This lets Prolog
programmers reason about the execution of their programs, but it can mean that some
logically sensible recursive programs fail to terminate. For example:

reachable(Y)← reachable(X), edge(X, Y).
reachable(start).

These rules encode our graph reachability example: a node is reachable if one of its neighbors
is, or if it is the start node. In Prolog, however, any query to reachable will loop.

This is because Prolog uses backward chaining (also called goal-directed or top-down)
depth-first search: we start from a goal and reason backward, applying rules that might
prove it. These rules are applied in the order they occur in the program, so to solve the query
reachable(st-louis), Prolog will apply the first rule and try recursively to solve reachable(X)
for unknown X. This in turn will apply the same rule, solving reachable(X2) for unknown X2,
which will solve reachable(X3) for unknown X3, and so on and on interminably.3

3 One natural approach to this problem is to keep backward chaining, but use a complete search strategy instead
of depth-first search; this is the approach adopted by miniKanren (Friedman et al., 2005). This restores some
declarativeness to logic programming; in particular, reordering rules can no longer cause unproductive infinite
looping. However, introducing a “redundant” rule like reachable(X)← reachable(X) will still cause proof search
to continue indefinitely (although it won’t prevent any proofs from being found). And while this example is
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Datalog takes a different tack: rather than fix a proof search strategy, it imposes limitations
that keep proof search decidable. In particular, ignoring for now the issue of negation, it
imposes two restrictions which keep all relations finite:

1. Clauses are range-restricted: all variables in the conclusion of a clause must occur
positively in its premises. For example, the premiseless clause “equal(X,X).” is disal-
lowed; while logically sensible (it asserts equal is reflexive), it leaves the variable X

unconstrained, which would generate an infinite relation.

2. Programs are constructor-free: predicate arguments are either atomic terms or variables.
This prevents the introduction of new terms that don’t already appear in the program,
as this could also result in an infinite relation; for example, the relation containing all
digit-lists (the use of a ‘constructor’ is underlined and red):

digits(nil).
digits(cons(X,Xs))← digit(X), digits(Xs).

Range-restriction and constructor-freedom together ensure that relations are finite and thus
enforce the ascending chain condition. This permits the most common Datalog implementa-
tion strategy, forward chaining. In backward chaining we start from a goal (“can we reach
St. Louis?”) and reason backward, applying rules that might prove it. In forward chaining,
we start from what we know (“we can reach Chicago, and there’s an edge from Chicago to
St. Louis”) and apply rules whose premises are satisfied.

The weakness of forward chaining is that it’s undirected: it deduces everything it can! If
all you want to know is whether you can reach St. Louis, this is wasteful. On the other hand,
it’s much easier to know when to stop: when there is no rule whose application yields a new
fact. This is the operational justification for range-restriction and constructor-freedom: by
ensuring all predicates are finite, we guarantee forward-chaining deduction terminates.

1.2.2 Stratified negation

Negation and deduction have an interesting relationship. Consider the following program:

undeducible()← ¬undeducible().

In classical logic, an implication B← A is equivalent to B ∨ ¬A. Applying this, the above is
equivalent to undeducible() ∨ ¬¬undeducible(), and thus simply to undeducible(). Regarded
as a rule of inference, however – as a strategy for deducing new facts from ones already known
– this clause makes little sense: we cannot invoke it unless we have proved its conclusion is
false!

To avoid this sort of gap between the logical meaning of a program and its interpretation
as inference rules, Datalog allows only programs where uses of negation can be stratified: a
recursively defined predicate (or mutually recursive group of predicates) cannot use its own
negation in its definition.

contrived, the problem in general is fundamental: without further limitations on clauses, proof search is only
semi-decidable, so while complete search strategies can guarantee finding all proofs, they cannot guarantee
they’ll halt after doing so. This is particularly important for the handling of negation-as-failure; see §1.2.2.
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This restriction also avoids the need to make arbitrary choices. For example, this is
disallowed:

marry-rochester()← ¬marry-st-john().
marry-st-john()← ¬marry-rochester().

This is classically equivalent to marry-rochester() ∨ marry-st-john(). While sensible logically,
this means answering simple yes-or-no queries requires making an arbitrary choice: if we
query the propositions marry-rochester() and marry-st-john() we may consistently answer
either Rochester or St John or both. The symmetry of our program makes answering either
Rochester or St John unprincipled, and both is simply not deducible from the given rules.

Thus, unlike the preceding restrictions, stratified negation is not about finiteness or
decidability; rather, it is motivated by interpreting a program as a set of rules for deduction
and not merely a set of propositions. In other words, in Datalog truth is identified with
deducibility.

Following this principle, we regard anything not deducible as false. This conforms with
the programmer’s expectation that anything not explicitly declared to be true is false. For
example, returning to our graph reachability example:

reachable(Y)← reachable(X), edge(X, Y).
reachable(start).

Regarded as mere propositions, these do not rule out the possibility that reachable(X) is
true for all vertices X, regardless of the edge relation (in other words, one model of these
propositions makes reachable the entire vertex set). But this is clearly not the programmer’s
intent, which is to capture reachability: not every graph is completely connected!

The principle of regarding anything not deducible as false is known as negation as failure:
to deduce ¬reachable(X) it suffices to attempt to deduce reachable(X) and fail.⁴ Forward-
chaining provides a natural implementation strategy for negation-as-failure: once we have
deduced all facts of the form reachable(X), if a particular such fact was not deduced, for
example reachable(α-centauri), we regard this as proof of its negation.

However, because a forward-chaining system must wait until all facts reachable(X) are
deduced before handling negative queries ¬reachable(X), it cannot handle such negative
queries in reachable’s own definition. This is the operational justification for stratified negation:
we must be able to stratify our Datalog program into layers, each of which may only use the
negation of predicates defined in the preceding layers.

Returning to our computational pattern, if range-restriction and constructor-freedom
are about establishing the ascending chain condition, stratification is about establishing
monotonicity within each stratum – each recursively-defined relation or group of relations.
These strata correspond to individual fixed point computations. But negation is non-monotone:
as its input grows toward truth, its result decreases to falsehood. This makes applying a rule
with a negated premise ¬P(...) dangerous: if as our knowledge grows we learn that P(...)
holds after all, we must retract our conclusion because it is not deducible. But this violates
the condition that our state – the set of deduced atoms – grows over time!

⁴ The closely related closed-world assumption states that whatever is true is known to be true; conversely, anything
not known to be true is false. If we take “known” to mean “deducible”, then the closed-world assumption justifies
negation as failure.
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1.3 Datalog for static analysis
Datalog has been successfully applied in various domains: for business analytics (Aref et al.,
2015), as a general purpose database query language (Hickey et al., 2012), in network
protocols (Alvaro et al., 2010; Loo et al., 2009), and for implementing distributed systems
algorithms (Alvaro et al., 2011; Conway et al., 2012). But probably Datalog’s most significant
real-world adoption has been as a tool for scalable static analysis.

Datalog makes defining simple static analyses almost trivial. For instance, the essence of
reaching definitions analysis can be expressed as follows:

reaches(L, V, L)← assigns(L, V).
reaches(Ldest, V, Lsrc)← ¬assigns(Ldest, V), reaches(Lprev, V, Lsrc), flows(Lprev, Ldest).

If flows(L1, L2) means that line L1 may transfer control to L2, and assigns(L, V) means
that line L assigns to variable V , the above defines reaches(Ldest, V, Lsrc) to mean that the
assignment to V at line Lsrc may reach Ldest.

Datalog’s fluency at defining static analyses is not limited to toy examples. For instance, it
has been successfully commercialized by Semmle, a company which uses a custom in-house
Datalog dialect & engine (Avgustinov et al., 2016) to do static analysis on large codebases
to find potential security vulnerabilities – in particular variant analysis, which searches for
variants of previously discovered issues. Their system has been used on NASA’s Curiosity
Rover,⁵ at Microsoft,⁶ and at the Nasdaq stock exchange company,⁷ among others.

On the academic side, the Doop project implements a state-of-the-art points-to analysis
for Java code entirely in Datalog (Bravenboer and Smaragdakis, 2009). In a testimonial of
sorts for the application of Datalog to static analysis, Smaragdakis and Bravenboer (2010)
give several reasons why they found Datalog to be useful when implementing a scalable
points-to analysis, compared in particular with a conventional language like Java or C++:

1. The high-level, declarative nature of Datalog allowed them to experiment with imple-
mentation techniques and algorithmic tweaks without having to entirely rewrite their
analyses; for instance, they needed to carefully choose how to index their relations for
maximal performance, a choice that would in a conventional language involve rewriting
your data-access code. In their words:

[W]e believe that our ability to efficiently optimize our implementation was
largely due to the declarative specifications of analyses. Working at the Datalog
level eliminated much of the artificial complexity of a points-to analysis imple-
mentation, allowing us to concentrate on indexing optimizations and on the
algorithmic essence of each analysis. (p. 1)

2. Datalog easily handles highly mutually-recursive relation definitions, which are common
in static analysis: for example, “the logic for computing a callgraph depends on having

⁵ https://web.archive.org/web/20210727023523/https://semmle.com/case-studies/

semmle-nasa-landing-curiosity-safely-mars

⁶ https://web.archive.org/web/20211130053831/https://msrc-blog.microsoft.com/2018/08/16/

vulnerability-hunting-with-semmle-ql-part-1/

⁷ https://web.archive.org/web/20210624221802/https://semmle.com/case-studies/

semmle-nasdaq-improving-roi-and-reducing-time-market
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points-to information for pointer expressions, which, in turn, requires a callgraph.” (p. 3)
They also observe that one of their crucial optimizations, performing exception analysis
on-the-fly, “would be quite hard to consider in a non-declarative context” because it
“results in highly recursive definitions of core relations” (p. 6).

3. Rather than hand-optimizing their code as might be necessary in a conventional lan-
guage, in Datalog they could rely on the language implementation to do a good chunk
of this work for them by applying decades of work on query optimisation:

We relied on query optimization (i.e., intra-rule, as opposed to inter-rule, opti-
mization) being performed automatically. This was crucial for performance and,
although a straightforward optimization in the context of database relations,
results in far more automation than programming in a mainstream high-level
language. (p. 6)

4. As we’ve seen with our examples so far, Datalog is very concise:

Generally, the declarative nature of Doop often allows for very concise specifi-
cations of analyses. We show in an earlier publication the striking example of
the logic for the Java cast checking—i.e., the answer to the question “can type
A be cast to type B?” The Datalog rules are almost an exact transcription of the
Java Language Specification. (p. 4)

We must also consider that static analysis blunts one of Datalog’s primary drawbacks. As
mentioned previously, one weakness of forward chaining is that it is undirected, deducing
everything it can. If we only need the results of a narrow query, this can waste a lot of effort.
Various optimizations and alternative evaluation strategies exist to address this problem,
including magic sets (Bancilhon et al., 1986; Beeri and Ramakrishnan, 1987), which statically
rewrites recursive relation definitions to produce only a subset of facts relevant to a given
query (for instance, automatically transforming all-pairs graph reachability to single-source
reachability); and tabling (Swift and Warren, 2012; Tekle and Liu, 2011), which hybridizes
forward- and backward-chaining by careful use of memoization. In static analysis, however,
the eagerness of forward-chaining is less problematic, as we generally wish to analyse the
whole program exhaustively, whether for optimization or for bug-finding purposes.

1.4 What Datalog can’t do
In §1.2 we discussed Datalog’s semantics and the deliberate restrictions that make it tractable;
in §1.3 we saw how this made Datalog an attractive language for writing static analyses.
However, Datalog’s restrictions are not without their drawbacks. In this section will consider
four things which Datalog does not support and their use-cases: (1) functional abstraction,
(2) semilattices other than set union, (3) arithmetic and aggregations, and (4) compound
data.

1.4.1 Functional abstraction

Consider our graph-reachability example again:
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reachable(start).
reachable(Y)← reachable(X), edge(X, Y).

Suppose we wish to compute reachability over multiple different graphs. One way is to repeat
ourselves:

reachable1(start1).
reachable1(Y)← reachable(X), edge1(X, Y).

reachable2(start2).
reachable2(Y)← reachable(X), edge2(X, Y).

reachable3(start3).
reachable3(Y)← reachable(X), edge3(X, Y).

...

This quickly becomes obnoxious if we wish to repeat something more complex than a two-
liner like graph reachability. In an ordinary language, we would factor out this repeated
code into a procedure or a function. Unfortunately, Datalog cannot do this: Datalog does not
have functions, procedures, or modules, only relations; and relations are first-order, unable
to manipulate or abstract over other relations. It is unclear how to lift this restriction without
giving up the guarantees that make forward-chaining Datalog evaluation tractable.

1.4.2 Semilattices other than set union

We have shown how to define reachability and reaching-definitions in Datalog. What about
our second example, single-source shortest paths? A naive approach at expressing this in
Datalog might look like this:

shortest(start, 0).
shortest(Y,D3)← shortest(X,D1), edge(X, Y,D2), D1 +D2 = D3.

The immediate issue here is the use of the infinite relation D1+D2 = D3; recall that infinite
relations can cause a problem for a forward-chaining evaluator. However, in this case D1

and D2 are supplied by the first two premises, and together these allow computing D3. The
deeper problem is that, despite its name, shortest(X,D) finds all distances D from start to X

rather than only the shortest. Besides failing to capture our intent, if the graph has cycles,
there may be infinitely many such distances, causing an infinite loop.

Datalog really only understands one semilattice – finite sets under union – and has no
way to specify that multiple sources of information, like the distance D in shortest(X,D),
should be combined using a different strategy. This puts any computation using a custom
semilattice out of reach. This particularly impacts Datalog’s application to static analysis,
where custom semilattices are frequently used to represent carefully-chosen approximations
of the full set of values an expressions or variables may take on – for instance, “flat” lattices
for constant propagation, or numeric intervals (or for multiple variables, convex polyhedra)
under convex hull and intersection.
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1.4.3 Arithmetic, user-defined functions, and aggregation

Pure Datalog does not permit using arithmetic or other functions. Although it is not difficult
to extend a forward-chaining Datalog evaluator with support for these, and consequently
almost everybody does so, this sacrifices Datalog’s termination guarantee, as we saw with
shortest paths. Even more problematic is support for aggregations, without which arithmetic
by itself is of limited use. We also saw the need for aggregation in our shortest paths example:
after calculating the lengths of multiple paths to the same node, we need to aggregate them
and keep only their minimum.

In this example, our desired aggregation arises from a semilattice – we are taking the
least upper bound

∨
p∈s length(p) over some set s of paths p; to add support for other

semilattices to Datalog, we need the ability to compute these semilattice aggregations.
Semilattice aggregations are well-behaved because they are monotone: the value of

∨
x∈s f(x)

grows monotonically with respect to both the set s and the function f. Thus the ascending
chain condition provides sufficient conditions for their termination when used as part of a
fixed point computation. However, not all useful aggregations form semilattices; for instance
summing or averaging do not. Aggregations like this may or may not be monotone depending
upon the order involved. Thus adding aggregations without careful restrictions can invalidate
Datalog’s least-fixed-point semantics.

1.4.4 Compound data

Datalog’s constructor-freedom prevents code that would directly manipulate compound data
structures, like lists, trees, or even tuples. This restriction rules out some infinite relations,
such as our “lists of digits” example from page 8, but it also rules out some legitimate, finite
use-cases as well. For instance, Smaragdakis and Bravenboer (2010) added a macro system
to their Datalog dialect to make writing context-sensitive static analyses less of a chore.

In a context-sensitive analysis, each rule depends upon a context representing an approxi-
mation of the conditions the code is executing under; for example, what call-site the function
being analysed was invoked from. A deep context requires multiple pieces of data to specify
(e.g. the preceding two or three functions on the call stack). It would be convenient to bundle
this information into a single piece of data, hiding the choice of exactly how deep the context
is, a choice orthogonal to the essence of the analysis. Although logically and operationally
unproblematic, this use of compound data is not possible in Datalog, barring a macro system
or some more principled extension.

1.5 Our goal and strategy
We started by introducing the computational pattern of monotone fixed points. We’ve seen
that Datalog can express and compute some, but not all, instances of this pattern. Datalog’s
limitations are both practical – it is not obvious how to extend Datalog with higher-order ab-
straction – and theoretical – real world Datalog engines often support aggregation, arithmetic,
and compound data, but in doing so raise the question of these features’ semantics.

The goal of this thesis is to design a language which improves on Datalog’s ability to
express monotone fixed point computation over semilattices by finding ways to lift Datalog’s
restrictions without sacrificing either its simple semantics or its practical implementation
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strategies. Our approach will be to combine Datalog with typed functional programming, on
the basis of three hypotheses:

1. We can gain functional abstraction by mixing Datalog with higher-order functional
programming. From a traditional logic programming perspective, this is a strange move:
functions are a special-case of relations, so the “natural” way to make a logic language
higher-order is to allow higher-order relations.

Datalog’s power, however, comes from carefully limiting, not expanding, how relations
may be defined; precisely because of their generality, higher-order relations are more
complex to implement than higher-order functions, especially if one wishes to keep a
natural semantics (Charalambidis et al., 2013). By separating our facility for deduction
(relations, queries, & fixed points) from our facility for abstraction (functions), we hope
to gain the best of both worlds.

2. We can capture the restrictions that make Datalog work by deconstructing it type-
theoretically. Type theory studies compositional properties of programs: if we recast
syntactic restrictions (stratification, constructor-freedom) in terms of the properties
they ensure (monotonicity, ACC), we can design a type system to capture these prop-
erties by finding compositional ways to provide them. Guided by this type system
and its semantics, we can add practical features to our language, such as semilattices,
aggregation, arithmetic, and compound datatypes, without sacrificing these properties.
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Chapter 2

The Datafun Language

2.1 Syntax sketch
The idea behind Datafun is to capture the essence of Datalog in a typed, higher-order,
functional setting. Since the key restriction that makes Datalog’s combination of recursion
and negation tractable – stratification – requires tracking monotonicity, we locate Datafun’s
semantics in the category Poset of partial orders and monotone maps. Since Poset is cartesian
closed, it can interpret the simply typed λ-calculus, giving us a notation for writing monotone
and higher-order functions. This lets us abstract over Datalog rules, something impossible in
Datalog itself! In this section we sketch the construction of Datafun hewing closely to this
semantic intuition.

Datafun begins as the simply-typed λ-calculus with functions (λX. e and e f), sums
(ini e and case e of . . .), and products ((e, f) and πi e). To represent relations, we add a
type of finite sets {

eq
A},1 introduced with set literals {e0, . . . en}, and eliminated using Moggi’s

monadic bind syntax, for (x ∈ e1) e2, which binds x in e2 successively to each element of
e1 and takes the union; in other words,

⋃
x∈e1

e2. Since we are working in Poset, each type
comes with a partial order on it; sets are ordered by inclusion, x ⩽ y : {

eq
A} ⇐⇒ x ⊆ y.

As long as all primitives are monotone, every definable function is also monotone. This
is necessary for defining fixed points, but may seem too restrictive. There are many useful
non-monotone operations, such as equality tests e = f. For example, {} = {} is true, but if
the first argument increases to {1} it becomes false, a decrease (as we’ll see later, in Datafun,
false < true).

How can we express non-monotone operations if all functions are monotone? We cut this
Gordian knot using a discreteness type constructor, □A. The elements of □A are the same as
those of A, but the partial order on □A is discrete, x ⩽ y : □A ⇐⇒ x = y. Monotonicity
of a function □A → B is vacuous: x = y implies f(x) ⩽ f(y) by reflexivity. In this way
we represent ordinary, possibly non-monotone, functions A → B as monotone functions
□A→ B.

Semantically, □ is a monoidal comonad or necessity modality, and so we base our syntax
on Pfenning and Davies (2001)’s syntax for the necessity fragment of constructive S4 modal
logic. This involves distinguishing two kinds of variable: discrete variables are in lowercase

1 To implement set types, their elements must support decidable equality. In our core calculus, we use a subgram-
mar of “eqtypes”, and in our implementation (which compiles to Haskell) we use typeclass constraints to pick
out such types.
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types A,B ::= {
eq
A} | 1 | A× B | A+ B | A→ B | □A

eqtypes
eq
A,

eq
B ::= {

eq
A} | 1 |

eq
A×

eq
B |

eq
A+

eq
B

semilattices L,M ::= {
eq
A} | 1 | L×M

finite eqtypes2
fin
A,

fin
B ::= {

fin
A} | 1 |

fin
A×

fin
B |

fin
A+

fin
B

fixtypes
fix
L,

fix
M ::= {

fin
A} | 1 |

fix
L×

fix
M

terms e, f ::= X | x | λX. e | e f | () | (e, f) | πi e

ini e | case e of (ini Xi � fi)i∈{1,2}

{ei}i | for (x ∈ e) f

[e] | let [x] = e in f

e = f | empty? e | split e
⊥ | e ∨ f | fix e

monotone variables X, Y, Z are abstract names
discrete variables x, y, z are abstract names

figure 2.1 Datafun syntax

(x, y, foo, bar), while monotone variables are capitals (X, Y, Z). Discrete variables may be
used without restrictions, but monotone variables may only be used in ways that respect the
ordering on their types: they must be usedmonotonically. This is enforced by a kind of variable
hygiene: we remove monotone variables from scope within non-monotone expressions. For
example, we cannot compare two monotone variables for equality, X = Y, because equality
comparison is non-monotone. To aid the reader, we highlight non-monotone expressions with
a light blue background; monotone variables bound outside of a non-monotone expression
like e = f may not be used within it. Putting this all together, we construct the type □A with
the non-monotone introduction form [e] and eliminate it by pattern-matching, let [x] = e in f,
giving access to a discrete variable x.

Finally, to express Datalog’s recursive queries, Datafun includes a fixed point combinator
fix, which computes the least fixed point of a map f. To ensure termination, this map must be
monotone and take a semilattice type with decidable equality and no infinite ascending chains,

fix
L. For our purposes, a semilattice is a partial order with a least element ⊥ and a least upper
bound operation ∨ (“join”). Finite sets (with the empty set as least element, and union as
join) are an example, as are tuples of semilattices. As long as the semilattice has no infinite
ascending chains, the chain of iterations ⊥ ⩽ f(⊥) ⩽ f(f(⊥)) ⩽ ... is guaranteed to stabilize
at the least fixed point fi(⊥) = fi+1(⊥) for some finite i. Decidable equality ensures we can
tell when this fixed point is reached. While not used by fixed point iteration itself, semilattice
join is used to define f in all our motivating examples (following the pattern from §1.1), so
we don’t bother introducing “posets with bottom” as a concept separate from semilattices.2

2 We are sweeping a few technical details under the rug here. First, for reasons which will not be explained until
§3.3.5 we treat fix as if it were a non-monotone operator. Second, observe that the finite set type {

eq
A} will

possess infinite ascending chains if
eq
A has infinitely many inhabitants. Thus we need to distinguish a class of

finite eqtypes
fin
A. Although their grammars in figure 2.1 are identical, their intent is different. For example, if

we extended Datafun with integers, they would form an eqtype, but not a finite one.
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2.2 Examples
For brevity and clarity, the examples that follow make use of some syntax sugar:

1. We mentioned earlier that Datafun’s boolean type bool is ordered false < true. This is
because we encode booleans as sets of empty tuples, or the type {1}, so written because
1 is the “unit type” of empty tuples. We desugar true to the singleton {()} and false to
the empty set {}. In a loop over a boolean, for (x ∈ e) f, the variable x contains no
useful information; if for brevity we omit it, the condensed expression for (e) f may be
thought of as a “one-sided” conditional:

for (e) f =

{
f if e is true
⊥ if e is false

Compared with encoding booleans as a sum type 1+1, our approach has the advantage
that it can express the type of “monotone” predicates P : A → bool such that P(x)
may change from false to true as x grows, but cannot revert from true to false.

2. We make use of pattern matching. Besides the usual sum/tuple patterns, we support
box-patterns [p] and equality-check patterns !e. Box patterns [p] correspond to box-
elimination let [x] = e in f, and their effect is to make all of the variables bound by
p discrete. The equality-check pattern !e matches only a value equal to e – this is
particularly useful when combined with set comprehensions.

3. We make use of set comprehensions, which can be desugared into the monadic operator
for (Wadler, 1992). We also support looping/comprehending over only those elements
of a set which match a certain pattern.

4. We express fixed points as a binding form, fix X is e, instead of explicitly supplying a
lambda to the fix combinator, fix [λX. e].

5. We permit ourselves a top-level surface syntax similar to Haskell or SML. In particular,
we allow curried function definitions, type aliases, and algebraic datatype definitions:

disjunction : bool→ bool→ bool
disjunction X Y = X ∨ Y

type colorname = string
data color = black | named colorname | rgb int int int

We do not allow data-types to be defined recursively, so they can be easily desugared
into sums of products in the standard way. Similarly, we allow ourselves n-ary tuples,
which are easily desugared into nested binary tuples.

We summarize the desugaring rules we use in figure 2.2, excepting our top-level declarations
and the desugaring of algebraic data types, which should be fairly familiar.
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types A,B ::= ... | bool

terms e, f ::= ... | true | false
for (C) e | {e | C}

if p � e then f1 else f2
fix X is e

discrete patterns p ::= x | | !e | (p1, p2) | ini p

loop clauses C,D ::= p ∈ e | e | C,D |

bool desugar−−−→ {1}

false desugar−−−→ {}

true desugar−−−→ {()}

{e | C}
desugar−−−→ for (C) {e}

for () e
desugar−−−→ e

for (C,D) e
desugar−−−→ for (C) for (D) e

for (e) f
desugar−−−→ for ( ∈ e) f

for (p ∈ e) f
desugar−−−→ for (x ∈ e) if p � x then f else ⊥

fix X is e
desugar−−−→ fix [λX. e]

λ[p]. e
desugar−−−→ λY. let [p] = Y in e

let [(x, y)] = e in f
desugar−−−→ let [z] = e in let [x] = [π1 z] in let [y] = [π2 z] in f

if � e then f1 else f2
desugar−−−→ f1

if x � e then f1 else f2
desugar−−−→ let [x] = [e] in f1

if !e1 � e2 then f1 else f2
desugar−−−→ case empty? (e1 = e2) of in1 � f2; in2 � f1

(NB. empty? e yields in1 if e is empty, i.e. false.)

if (p1, p2) � e then f1 else f2
desugar−−−→ if p1 � π1 e

then (if p2 � π2 e then f1 else f2)

else f2

if ini p � e then f1 else f2
desugar−−−→ case split [e] of

ini X � let [y] = X in (if p � y then f1 else f2)

in(3−i) X � f2

Fresh variables introduced by desugaring are colored pink.

figure 2.2 Syntax sugar
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2.2.1 Set operations and relational algebra

One of the main features of Datafun is that it permits manipulating relations as first class
values. In this subsection we will show how a variety of standard operations on sets can be
represented in Datafun. The first operation we consider is testing membership:

member : □
eq
A→ {

eq
A}→ bool

member [x] S = for (y ∈ S) x = y

This checks if x is equal to any element y ∈ S. The argument x is discrete because increasing
x might send it from being in the set to being outside the set: although 1 ⩽ 2 and 1 ∈ {1},
nonetheless 2 /∈ {1}. Notice that here we’re taking advantage of encoding booleans as sets of
empty tuples – unioning these sets implements logical or.

Next we turn to set union and intersection. Union is baked into Datafun as the semilattice
join, x ∪ y = x ∨ y, while intersection is definable using member, by taking the union of
every singleton {x} such that x is in both s and t:

∩ : {
eq
A}→ {

eq
A}→ {

eq
A}

S ∩ T = for (x ∈ S, member [x] T) {x}

Using comprehensions, this could alternately be written as:

S ∩ T = {x | x ∈ S, member [x] T }

From now on, we’ll use comprehensions whenever possible. For example, comprehensions
make cross product and relational composition look almost exactly like their mathematical
definitions:

× : {
eq
A}→ {

eq
B}→ {

eq
A×

eq
B}

S× T = {(x, y) | x ∈ S, y ∈ T }

• : {
eq
A×

eq
B}→ {

eq
B×

eq
C}→ {

eq
A×

eq
C}

S • T = {(a, c) | (a, b1) ∈ S, (b2, c) ∈ T, b1 = b2}

The definitions of functional programming stalwarts filter and map (or in relational algebra
terms, select and project) are slightly complicated by the need to be explicit about (non-)
monotonicity:

filter : (□
eq
A→ bool)→ {

eq
A}→ {

eq
A}

filter F S = {x | x ∈ S, F [x]}

map : □(□
eq
A→

eq
B)→ {

eq
A}→ {

eq
B}

map [f] S = {f [x] | x ∈ S}

Why is filter monotone in its function argument while map is not? Recall that functions
are ordered pointwise while sets are ordered by inclusion, and observe that increasing the
filtering function (making it true on more inputs) enlarges the result of filter, but the same
does not hold for map:

filter (⩽ 0) {0, 1} = {0} ⊆ {0, 1} = filter (⩽ 1) {0, 1}

map (⩽ 0) {0, 1} = {true, false} ̸⊆ {true} = map (⩽ 1) {0, 1}
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We can also define set difference, although we must first detour into boolean negation:

¬ : □bool→ bool
¬[t] = case empty? t of in1 () � true; in2 () � false

\ : {
eq
A}→ □{

eq
A}→ {

eq
A}

S \ [t] = {x | x ∈ S, ¬[member [x] t]}

To implement boolean negation, we need the primitive operator empty? e, which produces a
tag indicating whether its argument e (a boolean, i.e. a set of empty tuples) is the empty
set. This in turn lets us define set difference, the analogue in Datafun of negation in Datalog.
Note that in both boolean negation and set difference the “negated” argument t is boxed,
because the operation is not monotone in t. This enforces stratification.

Finally, generalizing our Datalog graph reachability example in §1.2, we can define the
transitive closure of a relation:

trans : □{
fin
A×

fin
A}→ {

fin
A×

fin
A}

trans [edge] = fix R is edge ∨ (edge • R)

This definition uses a least fixed point, just like the mathematical definition – a transitive
closure is the least relation R including both the original relation edge and the composition
of edge with R. However, a peculiar feature of this definition is that the argument type is
□{

fin
A×

fin
A}; transitive closure takes a discrete relation. This is because we must use the relation

within the fixed point, and Datafun treats fix as a discrete operator. This restriction is artificial
– transitive closure is semantically a monotone operation – but its explanation will have to
wait until §3.3.5.

2.2.2 Regular expression combinators

Datafun permits tightly integrating the higher-order functional and bottom-up logic program-
ming styles. To illustrate the benefits of doing so, in this section we implement a regular
expression matching library in combinator style. Like combinator parsers in functional lan-
guages, the code is very concise. However, support for the relational style ensures we can
write naïve code without the exponential backtracking cliffs typical of parser combinators in
functional languages.

For these examples we’ll assume the existence of eqtypes string, char, and int, an addition
operator +, and functions length and chars satisfying:

length : □string→ int
length [s] = the length of s

chars : □string→ {int× char}
chars [s] = {(i, c) | the ith character of s is c}

Note that by always boxing string arguments, we avoid committing ourselves to any particular
partial ordering on string.

These assumed, we define the type of regular expression matchers:

type regex = □string→ {int× int}
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A regular expression takes a discrete string [s] and returns the set of all pairs (i, j) such that
the substring si, . . . , sj−1 matches the regular expression. For example, to find all matches
for a single character c, we return the range (i, i+ 1) whenever (i, c) ∈ chars [s]:

sym : □char→ regex
sym [c] [s] = {(i, i+ 1) | (i, !c) ∈ chars [s]}

To find all matches for the empty regex, i.e. all empty substrings, including the one “beyond
the last character”:

nil : regex
nil [s] = {(i, i) | (i, ) ∈ chars [s]} ∨ {(length [s], length [s])}

Appending regexes R1, R2 amounts to relation composition, since we wish to find all substrings
consisting of adjacent substrings si . . . sj−1 and sj . . . sk−1 matching R1 and R2 respectively:

seq : regex→ regex→ regex
seq R1 R2 S = R1 S • R2 S

Similarly, regex alternation r1|r2 is accomplished by unioning all matches of each:

alt : regex→ regex→ regex
alt R1 R2 S = R1 S ∨ R2 S

The most interesting regular expression combinator is Kleene star. Thinking relationally, if we
consider the set of pairs (i, j) matching some regex r, then r* matches its reflexive, transitive
closure. This can be accomplished by combining nil and trans.

star : □regex→ regex
star [r] [s] = nil [s] ∨ trans [r [s]]

Note that the argument r must be discrete because trans uses it to compute a fixed point.3

2.2.3 Regular expression combinators, take two

The combinators in the previous section found all matches within a given substring, but often
we are not interested in all matches: we only want to know if a string can match starting at a
particular location. We can easily refactor the combinators above to work in this style, which
illustrates the benefits of tightly integrating functional and relational styles of programming
– we can use functions to manage strict input/output divisions, and relations to manage
nondeterminism and search.

type regex = □(string× int)→ {int}

Our new type of combinators takes a string and a starting position, and returns a set of
ending positions. For example, sym [c] checks if c occurs at the start position i, yielding
{i+ 1} if it does and the empty set otherwise, while nil simply returns the start position i.

3 Technically the inclusion order on sets of integer pairs does not satisfy the ascending chain condition, so this
use of trans is not well-typed. However, since the positions in a particular string form a finite set, semantically
there is no issue.
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sym : □char→ regex
sym [c] [(s, i)] = {i+ 1 | !(i, c) ∈ chars [s]}

nil : regex→ regex
nil [(s, i)] = {i}

Appending regexes seq R1 R2 simply applies R2 starting from every ending position that R1

can find:

seq : regex→ regex→ regex
seq R1 R2 [(s, i)] = for (j ∈ R1 [(s, i)]) R2 [(s, j)]

Regex alternation alt is effectively unchanged:

alt : regex→ regex→ regex
alt R1 R2 X = R1 X ∨ R2 X

Finally, Kleene star is implemented by recursively appending r to a set X of matches found so
far:

star : □regex→ regex
star [r] [(s, i)] = fix X is

(
{i} ∨ for (j ∈ X) r [(s, j)]

)
It’s worth noting that this definition is effectively left-recursive – it takes the endpoints from
the fixed point x, and then continues matching using the argument r. This should make clear
that this is not just plain old functional programming – we are genuinely relying upon the
fixed point semantics of Datafun.

2.2.4 CYK parsing

Parsing can be understood logically: a parse tree is a proof that a string belongs to a language,
and parsing is proof search (Shieber et al., 1995). One of the simplest parsing algorithms is
the Cocke-Younger-Kasami (CYK) algorithm for parsing grammars in Chomsky normal form;
that is, where each production is either of the form A→ BC or A→ a⃗, with A,B,C ranging
over nonterminals and a⃗ over strings of terminals. Fix a Chomsky-normal grammar G and
a word w = w0w1...wn−1 to be parsed, and write wi..j for the substring wi...wj−1. Now,
we introduce a family of predicates A(i, j) (sometimes called facts), intended to represent
the proposition that wi..j is generated by the nonterminal A. Then, we can specify the CYK
algorithm with the following two inference rules:

(A→ BC) ∈ G B(i, j) C(j, k)

A(i, k)

(A→ a⃗) ∈ G a⃗ = wi..j

A(i, j)

Then the whole word w is generated by the start symbol S if S(0, n) is deducible.
In Datafun, this rule-based description of the algorithm can be transliterated almost

directly into code. We begin by introducing a few basic types.

type symbol = string
data rule = string string | concat symbol symbol
type grammar = {symbol× rule}
type fact = symbol× int× int
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The symbol type is a type synonym representing nonterminal names with strings. The rule
type is the type of the right-hand-sides of productions in Chomsky normal form – either a
string, or a pair of nonterminals. A grammar is just a set of productions – a set of pairs of
nonterminals paired with their rules. The type fact represents the atomic facts deduced by
the CYK inference system – they are triples of the rulename, the start position, and the end
position.

length : □string→ int
range : □int→ int→ {int}
substring : □(string× int× int)→ string
(+) : int→ int→ int
(−) : int→ □int→ int

With these types in hand, we can write the CYK algorithm as a fixed point computation. In
fact, it is convenient to break it into two pieces, by first defining the function whose fixed
point we take. So we can write down the iter function, which represents one step of the fixed
point iteration.

iter : □string→ □grammar→ {fact}→ {fact}
iter [text] [grammar] F =

{ (a, i, k) | (a, concat b c) ∈ grammar, (!b, i, j) ∈ F, (!c, !j, k) ∈ F }

∪ { (a, i, i+ length s) | (a, string s) ∈ grammar,
i ∈ range [0] (length text − [length s]),

substring [text, i, i+ length s] }

We can then use iter to implement the parse function:

parse : □string→ □grammar→ {symbol}
parse [text] [grammar] =
{a | (a, !0, !(length text)) ∈ fix X is iter [text] [grammar] X}

This finds all nonterminals in grammar that generate the entire string text.
This program is not expressible in Datalog, because Datalog provides no way to abstract

over grammars. The rules of a grammar are easily represented as Datalog relations — but
since Datalog is first-order, it cannot parameterize one relation by another; so there is no way
in Datalog to express a generic parser. This demonstrates one of the key benefits of moving
to a functional language like Datafun.

2.2.5 Dataflow analysis

In this section, we show how some simple dataflow analyses can be expressed in Datafun.
We begin with the types in these programs.

type var = string
type label = int
data op = eq | le | add | sub | mul | div
data atom = var var | num int
data expr = atom atom | apply op atom atom
data statement = assign var expr | if expr label label
type program = {label× statement}
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We represent a program as a set of nodes. Each node has a label and contains a statement,
either an assignment (assign) or a conditional jump (if). Valid programs p associate any
label l with at most one node (l, s) ∈ p. In what follows, we use a few trivial functions whose
definitions we omit.

labels : program→ {label}
uses : □statement→ {var}
defines : □statement→ {var}

The labels function returns the set of labels in a program. The uses function returns the set
of variables used by the expressions in a statement. The defines function returns the set of
variables defined by a statement (i.e., at most one variable – the target of the assignment).

Given a program, we can recover its 1-step control flow graph with the flow function:

type flow = {label× label}
flow : program→ flow
flow P = for ((i, s) ∈ P)

if if j k � s

then {(i, j), (i, k)}

else {(i, i+ 1) | !(i+ 1) ∈ labels P}

This says that if a program node (i, s) is a conditional jump, if j k, then it may flow to
either j or k; otherwise, it flows to the next program position i+ 1 if it exists.

Using this we can define liveness analysis, one of the classic backwards dataflow analyses.
The function live takes a program P and its flow graph F and produces a set of label/variable
pairs (i, v) indicating that the variable v is live at program point i.

live : □program→ □flow→ {label× var}
live [program] [flow] =

fix L is
for ((i, s) ∈ program)

({i}× uses s)
∪ {(i, v) | (!i, j) ∈ flow, (!j, v) ∈ L, ¬[member [v] (defines s)]}

At each label i, a variable v is live if either of two conditions holds: (1) it is used by the
current statement s, or (2) it is live at some label j to which i flows, and which does not
define the variable v for itself.

Next we give one of the classic forwards dataflow analyses: reaching definitions. This
determines which program points the value assigned by a particular statement (a “definition”)
can reach.

reaching : □program→ □flow→ {var× label× label}
reaching [program] [flow] =

fix R is
for ((k, s) ∈ program)

{(v, k, k) | v ∈ defines s}
∪ {(v, i, k) | (j, !k) ∈ flow, (v, i, !j) ∈ R, ¬[member [v] (defines s)]}

The function reaching takes a program and its flow graph, and returns a set of tuples (v, i, j)
indicating that the definition of v at i might reach the program point j. These tuples are
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contexts Γ ::= ε | Γ, H

hypotheses H ::= X : A | x :: A

⌈ε⌉ = ε

⌈Γ, X : A⌉ = ⌈Γ⌉
⌈Γ, x :: A⌉ = ⌈Γ⌉, x :: A

var
X : A ∈ Γ

Γ ⊢ X : A

dvar
x :: A ∈ Γ

Γ ⊢ x : A

lam
Γ, X : A ⊢ e : B

Γ ⊢ λX. e : A→ B

app
Γ ⊢ e : A→ B Γ ⊢ f : A

Γ ⊢ e f : B

unit

Γ ⊢ () : 1

pair
(Γ ⊢ ei : Ai)i

Γ ⊢ (e1, e2) : A1 ×A2

prj
Γ ⊢ e : A1 ×A2

Γ ⊢ πi e : Ai

inj
Γ ⊢ e : Ai

Γ ⊢ ini e : A1 +A2

case
Γ ⊢ e : A1 +A2 (Γ, Xi : Ai ⊢ fi : B)i

Γ ⊢ case e of (ini Xi � fi)i : B

box
⌈Γ⌉ ⊢ e : A

Γ ⊢ [e] : □A

letbox
Γ ⊢ e : □A Γ, x :: A ⊢ f : B

Γ ⊢ let [x] = e in f : B

bot

Γ ⊢ ⊥ : L

join
(Γ ⊢ ei : L)i

Γ ⊢ e1 ∨ e2 : L

set
(⌈Γ⌉ ⊢ ei : eq

A)i

Γ ⊢ {ei}i : { eq
A}

for
Γ ⊢ e : {

eq
A} Γ, x ::

eq
A ⊢ f : L

Γ ⊢ for (x ∈ e) f : L

eq
(⌈Γ⌉ ⊢ ei : eq

A)i

Γ ⊢ e1 = e2 : bool

empty
⌈Γ⌉ ⊢ e : {1}

Γ ⊢ empty? e : 1+ 1

split
Γ ⊢ e : □(A+ B)

Γ ⊢ split e : □A+□B

fix
Γ ⊢ e : □(

fix
L→

fix
L)

Γ ⊢ fix e :
fix
L

figure 2.3 Datafun typing rules

generated by two rules, corresponding to the two clauses in reaching’s inner loop: (1) if v is
defined at i, then it reaches i, and (2) if the definition of v at i reaches j and j flows to k

then the definition also reaches k unless j has an intervening definition of v.

2.3 Typing and denotational semantics
Our guiding intuition so far has been that Datafun is a language for writing monotone,
higher-order functions. Here we substantiate that intuition by giving typing rules for core
Datafun and showing how to interpret well-typed Datafun terms into Poset, the category of
partially ordered sets and monotone maps.

2.3.1 Typing rules

The syntax of core Datafun is given in figure 2.1 and its typing rules in figure 2.3. Contexts
are lists of hypotheses H; a hypothesis gives the type of either a monotone variable X : A

or a discrete variable x :: A. The typing judgement Γ ⊢ e : A may be read as “assuming the
variables in Γ have their given types, the term e has type A; moreover, e is monotone with
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respect to the monotone variables in Γ”.
The var and dvar rules say that bothmonotone hypothesesX : A and discrete hypotheses

x :: A justify ascribing their variable the type A. The lam rule is the familiar rule for λ-
abstraction. However, note that we introduce the argument variable X : A as a monotone
hypothesis, not a discrete one. (This is the “right” choice because in Poset the exponential
object is the poset of monotone functions.) The application rule app is standard, as are the
rules unit, pair, prj, inj. Case analysis case is also standard, noting only that as with
lam, the variables Xi : Ai bound in each branch fi are monotone.

box says that [e] has type □A when e has type A in the stripped context ⌈Γ⌉. The
stripping operation ⌈Γ⌉ drops all monotone hypotheses from the context Γ , removing them
from scope in e and implementing the “variable hygiene” discussed in §2.1. This ensures
we don’t smuggle any information we must treat monotonically into a discretely-ordered □
expression. The elimination rule letbox for (let [x] = e in f) allows us to “cash in” a boxed
expression e : □A by binding its result to a discrete variable x :: A in the body f.

At this point, our typing rules correspond to standard constructive S4 modal logic (Pfen-
ning and Davies, 2001). We get to Datafun by adding a handful of domain-specific types and
operations. First, split provides an operator split : □(A+B)→ □A+□B to distribute box
across sum types. The other direction, □A+□B→ □(A+ B), is already derivable, as is the
isomorphism □A×□B ∼= □(A× B). This is used implicitly by box pattern-matching – e.g.,
in the pattern [(in1 x, in2 y)], the variables x and y are both discrete, which is information
we propagate via these conversions. Semantically, all of these operations are the identity, as
we shall see shortly.⁴

This leaves only the rules for manipulating sets and other semilattices. bot and join tell
us that ⊥ and ∨ are valid at any semilattice type L, that is, at sets and products of semilattice
types. The rule for set-elimination, for, is almost a monadic bind. However, we generalize it
by allowing for (x ∈ e) f to eliminate into any semilattice type, not just sets, denoting a “big
semilattice join” rather than a “big union”.

The set-introduction rule set gives {ei}i∈I type { eq
A} when each of the ei has type eq

A. Just
as in box, each ei has to typecheck in a stripped context; constructing a set is a discrete
operation, since 1 ⩽ 2 but {1} ̸⊆ {2}.

Likewise discrete is equality comparison e1 = e2, whose rule eq is otherwise straightfor-
ward; and empty, which requires more explanation. The idea is that empty? e determines
whether e : {1} is empty, returning in1 () if it is, and in2 () if it isn’t. This lets us turn “booleans”
(sets of units) into values we can case-analyse. This is, however, not monotone, because while
booleans are ordered false < true, sum types are ordered disjointly; in1 () and in2 () are
incomparable.

Finally, the rule fix says that the fixed point fix combinator accepts a boxed function
f : □(

fix
L →

fix
L) and returns a value of type

fix
L. The restriction to “fixtypes” ensures

fix
L has no

infinite ascending chains, guaranteeing the recursion will terminate. The restriction to boxed
functions, treating fix as a non-monotone operator, is motivated not by our semantics but
by our strategy for evaluating Datafun efficiently. This will be explained in detail in §3.3.5,
but as a foreglimpse, to evaluate Datafun efficiently, we incrementalize monotone functions;
incrementally maintaining fix is difficult, so we treat it as non-monotone.

⁴ An alternative to box pattern-matching and split, pursued in Arntzenius and Krishnaswami (2016), would be to
give two rules for case, depending on whether or not the scrutinee can be typechecked in a stripped context.
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2.3.2 The category Poset and its structures

An object of Poset is a pair (A,⩽A) consisting of a set A and a reflexive, transitive, antisym-
metric relation ⩽A⊆ A×A. For convenience, we usually denote these by a single letter A,
leaving ⩽A implicit. Following this convention, a morphism f : A→ B is a function such that
x ⩽A y =⇒ f(x) ⩽B f(y).

Bicartesian structure

The bicartesian closed structure of Poset is largely the same as in Set. The product and sum
sets are constructed the same way, and ordered pointwise:

(a, b) ⩽A×B (a ′, b ′) ⇐⇒ a ⩽A a ′ ∧ b ⩽B b ′

ini x ⩽A1+A2
inj y ⇐⇒ i = j ∧ x ⩽Ai

y

Projections πi, injections ini, tupling ⟨f, g⟩ and case-analysis [f, g] are all the same as in Set,
pausing only to note that all these operations preserve monotonicity, as we need.

The exponential A ⇒ B consists of the monotone maps f : A → B, again ordered
pointwise:

f ⩽A⇒B g ⇐⇒ (∀x ⩽A y) f x ⩽B g y

Currying λ and evaluation are the same as in Set. Supposing f : A× B→ C, then:

λ(f) : A→ (B⇒ C) evalA,B : (A⇒ B)×A→ B

λ(f) = x 7→ y 7→ f(x, y) evalA,B = (g, x) 7→ g(x)

Monotonicity here follows from the monotonicity of f and g and the pointwise ordering of
A⇒ B.

The discreteness comonad

Given a poset (A,⩽A) we define the discreteness comonad □(A,⩽A) as (A,⩽□A), where
a ⩽□A a ′ ⇐⇒ a = a ′. That is, the discrete order preserves the underlying elements,
but reduces the partial order to mere equality. This forms a rather boring comonad whose
functorial action □(f), extraction εA : □A→ A, and duplication δA : □A→ □□A are all
identities on the underlying sets:

□(f) = f εA = a 7→ a δA = a 7→ a

This makes the functor and comonad laws trivial. Monotonicity holds in each case because
all functions are monotone with respect to ⩽□A. It is also immediate that □ is monoidal with
respect to both products and sums. That is,□(A×B) ∼= □A×□B and□(A+B) ∼= □A+□B.
In both cases the isomorphism is witnessed by identity on the underlying elements. These
lift to n-ary products and sums as well, which we write as dist×□ :

∏
i□Ai → □

∏
i Ai and

dist□+ : □
∑

i Ai →
∑

i□Ai.
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Sets and semilattices

Given a poset (A,⩽A) we define the finite powerset poset P(A,⩽A) as (Pfin A,⊆), that is,
the finite subsets of A ordered by inclusion.⁵ Finite sets admit a pair of useful morphisms:

singleton : □A→ PA isEmpty : □PA→ 1+ 1

singleton = a 7→ {a} isEmpty = X 7→

{
in1 () when X = ∅
in2 () otherwise

The singleton function takes a value and makes a singleton set out of it. The domain must be
discrete, as otherwise the map will not be monotone (sets are ordered by inclusion, and set
membership relies on equality, not the partial order). Similarly, the emptiness test isEmpty
also takes a discrete set-valued argument, because otherwise the boolean test would not be
monotone.

Sets also form a semilattice, with the least element given by the empty set, and join given
by union. For this and other semilattices L ∈ Poset, in particular products of semilattices, we
write joinL

n : Ln → L to denote the n-ary semilattice join (least upper bound). Moreover, if
f : A×□B→ L, we define a morphism collect(f) : A× PB→ L as follows:

collect(f) = (a, X) 7→
∨
b∈X

f(a, b)

We will use this to interpret for-loops. However, it is worth noting that the discreteness of
singleton means finite sets do not quite form a monad in Poset.

Equality

Every object A ∈ Poset admits an equality-test morphism eq:

eq : □A×□A→ P1

eq = (x, y) 7→

{
{()} if x = y

∅ otherwise

The domain must be discrete, since x = y and y ⩽ z certainly doesn’t imply x = z. Although
in principle every object A ∈ Poset admits eq, in practice our semantics only uses it when
equality is decidable.

Fixed points

Given a semilattice L ∈ Poset without infinite ascending chains, we can define a family of
fixed point morphisms fix : □(L⇒ L)→ L as follows:⁶

⁵ Note that the subset ordering completely ignores the element ordering ⩽A. There are orderings on Pfin A

which are not so forgetful; for instance, the free semilattice FA consists of finite sets ordered by s ⩽FA t ⇐⇒
(∀x ∈ s, ∃y ∈ t) x ⩽A y and quotiented by antisymmetry (this may also be seen as the semilattice of finitely-
generated downward closed sets under union, or of finite antichains). Our PA is isomorphic to F□A. However,
Datalog’s semantics use only the inclusion order, as do all of our motivating examples; so for simplicity we have
stuck to it.

⁶ In fact, fix is monotone and could be regarded as a map (L⇒ L)→ L, but because the typing rule for fix boxes
its argument, we do the same here.
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fix = f 7→
∨
n∈N

fn(⊥)

A routine inductive argument shows this must yield a least fixed point.

2.3.3 Interpretation of Datafun in Poset

Figure 2.4 shows how to interpret Datafun into Poset using the structures developed above.
We interpret Datafun types and typing contexts as Poset-objects JAK, JΓK and well-typed
Datafun terms (or more precisely, their typing derivations) Γ ⊢ e : A as Poset-morphisms
JΓK→ JAK. This follows the usual interpretation for constructive S4 (Alechina et al., 2001),
with the addition of sets, semilattices, fixed points, and the ability to distribute □ over sums.
We give the interpretation in combinatory style; to increase readability, we freely use n-ary
products to represent our typing context, to avoid the book-keeping of reassociating binary
products.

Regarding notation, we write composition in diagrammatic or “pipeline” order with a
semicolon, so f ; g : A → C means f : A → B followed by g : B → C. If fi : A → Bi we
write ⟨fi⟩i : A →

∏
i Bi for the “tupling map” such that ⟨fi⟩i ; πj = fj. In particular, ⟨⟩ is

the map into the terminal object. Dually, if gi : Ai → B we write [gi]i :
∑

i Ai → B for the
“case-analysis map” such that inj ; [gi]i = gj.

2.4 Operational semantics
We consider the denotational semantics to be primary in Datafun; as with Datalog, any
implementation technique is valid so long as it lines up with this semantics. To show such an
implementation is possible, we present a simple call-by-value structural operational semantics
in figure 2.5 and show that all well-typed terms terminate. In our operational semantics we:

1. Drop the distinction between discrete andmonotone variables, writing both in lowercase
x, y, z, and cease using a light blue background for non-monotone expressions.

2. Assume all equality tests and all semilattice operations (⊥, ∨, for, and fix) are sub-
scripted with their type.

3. Add iter expressions, which occur as intermediate forms in the evaluation of fix.

We use a small-step operational semantics with evaluation contexts E (Felleisen and Hieb,
1992) to enforce a call-by-value evaluation order; an evaluation context E is an expression
with a hole in it, written O, such that whatever is in the hole is next in line to be evaluated
(if it is not a value already). To fill the hole in an evaluation context E with the expression e,
we write E {O 7→ e}.

We define a relation e 7−→ e ′ for expressions e whose outermost structure is immediately
reducible; we extend this relation to all expressions with the rule:

eval context
e 7−→ e ′

E {O 7→ e} 7−→ E {O 7→ e ′}
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type and context denotations

J1K = 1 JA→ BK = JAK⇒ JBK
J{

eq
A}K = PJ

eq
AK JA× BK = JAK× JBK

J□AK = □JAK JA+ BK = JAK+ JBK

JΓK =
∏
H∈Γ

JHK JX : AK = JAK Jx :: AK = □JAK JΓ ⊢ AK = Poset(JΓK, JAK)

term denotations

JΓ ⊢ X : AK = πX (for X : A ∈ Γ)
JΓ ⊢ x : AK = πx ; ε (for x :: A ∈ Γ)

JΓ ⊢ λX. e : A→ BK = λXJΓ, X : A ⊢ e : BK

JΓ ⊢ e1 e2 : BK = ⟨JΓ ⊢ e1 : A→ BK, JΓ ⊢ e2 : AK⟩ ; eval

JΓ ⊢ (e1, e2) : A1 ×A2K = ⟨JΓ ⊢ e1 : A1K, JΓ ⊢ e2 : A2K⟩
JΓ ⊢ πi e : AiK = JΓ ⊢ e : A1 ×A2K ; πi

JΓ ⊢ ini e : A1 +A2K = JΓ ⊢ e : AiK ; ini

JΓ ⊢ case e of (ini Xi � fi)i : BK = ⟨idJΓK, JΓ ⊢ e : A1 +A2K⟩
; dist×+
;
[
JΓ, Xi : Ai ⊢ fi : BK

]
i∈{1,2}

JΓ ⊢ [e] : □AK = boxΓ (J⌈Γ⌉ ⊢ e : AK)

JΓ ⊢ let [x] = e in f : BK = ⟨idJΓK, JΓ ⊢ e : □AK⟩ ; JΓ, x :: A ⊢ f : BK

JΓ ⊢ ⊥ : LK = ⟨⟩ ; joinJLK
0

JΓ ⊢ e ∨ f : LK = ⟨JΓ ⊢ e : LK, JΓ ⊢ f : LK⟩ ; joinJLK
2

JΓ ⊢ empty? e : 1+ 1K = boxΓ (J⌈Γ⌉ ⊢ e : {1}K) ; isEmpty

JΓ ⊢ split e : □A+□BK = JΓ ⊢ e : □(A+ B)K ; dist□+
JΓ ⊢ e1 = e2 : boolK = ⟨boxΓ (J⌈Γ⌉ ⊢ e1 :

eq
AK), boxΓ (J⌈Γ⌉ ⊢ e2 :

eq
AK)⟩ ; eq

JΓ ⊢ fix e :
fix
LK = JΓ ⊢ e : □(

fix
L→

fix
L)K ; fix

JΓ ⊢ {ei}i : { eq
A}K = ⟨boxΓ (J⌈Γ⌉ ⊢ ei : eq

AK) ; singleton⟩i ; joinPJ
eq
AK

JΓ ⊢ for (x ∈ e) f : LK = ⟨idJΓK, JΓ ⊢ e : {
eq
A}K⟩ ; collect(JΓ, x ::

eq
A ⊢ f : LK)

auxilliary operations

dist×+ : A× (B1 + B2)→ (A× B1) + (A× B2) boxΓ : J⌈Γ⌉ ⊢ AK→ JΓ ⊢ □AK
dist×+ = ⟨π2 ; [λ(⟨π2, π1⟩ ; ini)]i, π1⟩ ; eval boxΓ (f) = ⟨πx ; δ⟩x::A∈Γ ; dist×□ ; □(f)

figure 2.4 Semantics of Datafun
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additional syntax

expressions e, f, g ::= ... | e =
eq
A f | ⊥L | e ∨L f | forL (x ∈ e) f | fix

fix
L e

iter
eq
A(v, e, f)

values v, u ::= λx. e | () | (v, u) | ini v | {vi}i | [v]

evaluation contexts E ::= O | E e | v E | (E, e) | (v, E) | πi E

ini E | case E of (ini xi � ei)i
[E] | let [x] = E in e

{⃗v, E, e⃗} | E ∨L e | v ∨L E | forL (x ∈ E) e

E =A e | v =A E | split E | empty? E
fix

fix
L E | iterA(v, E, f) | iterA(v, u, E)

value (in)equality

() ⩽ () : 1
v1 ⩽ u1 :

eq
A v2 ⩽ u2 :

eq
B

(v1, v2) ⩽ (u1, u2) : eq
A×

eq
B

v ⩽ u : Ai

ini v ⩽ ini u : A1 +A2

(∀i, ∃j) vi = uj : eq
A

{vi}i ⩽ {uj}j : { eq
A}

v ⩽ u :
eq
A u ⩽ v :

eq
A

v = u :
eq
A

β reductions

(λx. e) v 7−→ e {x 7→ v} let [x] = [v] in e 7−→ e {x 7→ v}

πi (v1, v2) 7−→ vi case ini v of (inj xj � ej)j 7−→ ei {xi 7→ v}

forL (x ∈ {}) e 7−→ ⊥L

forL (x ∈ {u⃗, v}) e 7−→ (forL (x ∈ {u⃗}) e) ∨L (e {x 7→ v})

other reductions

⊥1 7−→ () () ∨1 () 7−→ ()

⊥{A} 7−→ {} {⃗v} ∨{A} {u⃗} 7−→ {⃗v, u⃗}

⊥L×M 7−→ (⊥L, ⊥M) (v1, v2)∨L×M (u1, u2) 7−→ (v1 ∨L u1, v2 ∨M u2)

empty? {} 7−→ in1 () empty? {v, u⃗} 7−→ in2 ()

split [ini v] 7−→ ini [v] v =
eq
A u 7−→

{
true if v = u :

eq
A

false otherwise

fix
fix
L [v] 7−→ iter

fix
L(v, ⊥

fix
L, v ⊥

fix
L)

iter
eq
A(v, u1, u2) 7−→

{
u1 if u1 = u2 :

eq
A

iter
eq
A(v, u2, v u2) otherwise

figure 2.5 Operational semantics

31



In our rules for e 7−→ e ′ where e is an iter expression we make use of a decidable ordering
test on values, v ⩽ u :

eq
A, and a corresponding equality test v = u :

eq
A. We define these using

inference rules, but they are easily seen to be decidable by induction on
eq
A.

Our implementation strategy for fix f is straightforward: starting from⊥, iteratively apply
f until quiescence. We introduce the form iter(f, e1, e2) to represent these intermediate
iterative steps. The intention is that e1, e2 shall be successive iterations of f, with e2 = f e1.
The fixed point expression fix f, after evaluating f, steps to iter(f, ⊥, f e), which kicks off
the first two iterations. Once these have reduced to values, iter(f, u1, u2) tests u1 = u2 to
determine if a fixed point has been reached. If so, its value u1 is returned; otherwise we step
to iter(f, u2, f u2) to evaluate the next iteration, and so on.

Observe that values don’t step and evaluation is deterministic:

Lemma 1 (Values don’t step). If v is a value, there is no e such that v 7−→ e.

Proof. The left hand side of each reduction rule can never be a value. This is easily verified
by inspection for the rules in figure 2.5; and for eval context we can see by the definition
of evaluation contexts E that filling a hole with a non-value always produces a non-value.

Lemma 2 (Determinism). If e 7−→ e ′
1 and e 7−→ e ′

2 then e ′
1 = e ′

2; thus inductively, since
values don’t step, if e 7−→∗ v and e 7−→∗ u then v = u.

Proof. The left-hand sides of all reduction rules e 7−→ e ′ are disjoint; there is no term to
which two distinct reduction rules could apply. This applies inductively to eval context
because decompositions of a term into an evaluation context and a reducible subterm are
unique.

2.4.1 A logical relation for termination

To prove that all well-typed terms terminate according to our operational semantics, we use
a logical relations argument. As a matter of notation, we will let v, u,w range over values;
a, b, c range over closed terms; and γ, σ range over closing substitutions.

Our guiding intuition is that since we need an order structure in our denotational semantics
to prove the definedness of fixed points, we likewise need an order structure on our syntax
to prove the termination of fixed points. To this end we interpret each type A as a partial
preorder, x ≺ y : A. A partial preorder is a relation which is transitive and partially reflexive,
that is, x ≺ y =⇒ x ≺ x ∧ y ≺ y. While reflexivity may be glossed as “every element
is related to itself”, partial reflexivity glosses as “if an element is related to anything, it is
related to itself”; in other words, unlike reflexivity, it permits some elements to be “outside
the relation” and unrelated to anything, even themselves. Any partial preorder x ≺ y gives
rise to a symmetric, transitive relation x ≡ y ⇐⇒ x ≺ y ∧ y ≺ x.⁷

In fact we define a mutually inductive collection of partial preorders: on values v ≺ u : A,
an extension to closed terms a ≺ b : A, on closing substitutions γ ≺ σ : Γ , on open terms

⁷ Symmetric, transitive relations are also known as partial equivalence relations (PERs). Moreover, letting [x]≡
denote the equivalence class of x (defined only when x ≺ x), the relation [x]≡ ⩽ [y]≡ ⇐⇒ x ≺ y is a
partial order over these equivalence classes; so our approach may also be considered to interpret types as PERs
equipped with partial orders on their equivalence classes.
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e ≺ f : Γ ⊢ A, and on open terms paired with closing substitutions γ1, e1 ≺ γ2, e2 : Γ,A.
The rules for the value-relation are:

() ≺ () : 1

v1 ≺ u1 : A v2 ≺ u2 : B

(v1, v2) ≺ (u1, u2) : A× B

v ≺ u : Ai

ini v ≺ ini u : A1 +A2

lr fn
e ≺ f : (X : A ⊢ B)

λX. e ≺ λX. f : A→ B

v ≡ u : A

[v] ≺ [u] : □A

lr set
(∀i, ∃j) vi ≡ uj : eq

A (∀j) uj ≺ uj : eq
A

{vi}i ≺ {ui}i : { eq
A}

Note that lr fn depends on the relation for open terms, making this definition mutually
inductive. The second premise of lr set may seem strange but it is necessary to ensure
partial reflexivity. We extend this value-relation to closed terms:

a ≺ b : A ⇐⇒ (∃v, u) a 7−→∗ v ∧ b 7−→∗ u ∧ v ≺ u : A

Note that if a, b are values, this definition coincides with the relation on values, since values
do not step; this justifies using the same notation for the relation on values and closed terms.
We extend this relation to closing substitutions pointwise, noting that discrete hypotheses
are required to be equivalent:

γ ≺ σ : Γ ⇐⇒ ((∀X : A ∈ Γ) γx ≺ σx : A) ∧ ((∀x :: A ∈ Γ) γx ≡ σx : A)

Finally, we extend the relation to open terms, which involves an auxiliary relation on pairs of
terms and closing substitutions:

e1 ≺ e2 : Γ ⊢ A ⇐⇒ (∀γ1 ≺ γ2 : Γ) γ1, e1 ≺ γ2, e2 : Γ,A

γ1, e1 ≺ γ2, e2 : Γ,A ⇐⇒ (∀i = 1, 2) γi(e1) ≺ γi(e2) : A ∧ γ1(ei) ≺ γ2(ei) : A

Note that γ1, e1 ≺ γ2, e2 : Γ,A may be seen as a transitive square:

γ1(e1) γ1(e2)

γ2(e1) γ2(e2)

≺

≺ ≺

≺

This ensures partial reflexivity; if we replace e1 with e2 or vice-versa this square collapses to
one of its sides. If we had instead only required the diagonal, γ1(e1) ≺ γ2(e2) : A, we could
not derive γ1(e1) ≺ γ2(e1) : A (or the same for e2) as required by partial reflexivity.

Theorem 3 (Fundamental theorem). If Γ ⊢ e : A then e ≺ e : Γ ⊢ A.

Termination of well-typed programs follows as a corollary by unrolling definitions:

Theorem 4 (Termination). Every closed, well-typed program ε ⊢ a : A terminates.
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Proof.
ε ⊢ a : A

=⇒ a ≺ a : ε ⊢ A Fundamental theorem
=⇒ (∀γ1 ≺ γ2 : ε) γ1, a ≺ γ2, a : Γ,A expand the definition
=⇒ (), a ≺ (), a : ε,A since () ≺ () : ε vacuously
=⇒ a ≺ a : A expand the definition and simplify
=⇒ (∃v, u) a 7−→∗ v ∧ a 7−→∗ u ∧ v ≺ u : A expand the definition
=⇒ (∃v) a 7−→∗ v simplify

The proof of the fundamental theorem itself proceeds by induction on Γ ⊢ e : A. The key
case is the fixed point rule, whose proof is a syntactic version of the proof of the existence
of least fixed points in the denotational semantics. We give the proof of the fundamental
theorem at the end of this section; to build up to it we must first develop several auxiliary
definitions and lemmas.

2.4.2 Metatheory of the logical relation

First, any partial preorder over a set S gives rise to a subset {x ∈ S | x ≺ x} over which ≺
is reflexive and thus a true preorder. It will be convenient to apply this point of view to our
logical relations:

Definition 5 (Good terms). We define the following preordered sets of “good” terms:

OkV(A) = {v | v ≺ v : A} the good values
OkC(A) = {a | a ≺ a : A} the good closed terms

Ok(Γ ⊢ A) = {e | e ≺ e : Γ ⊢ A} the good open terms

We preorder these by the corresponding logical relation, so v ⩽ u : OkV(A) ⇐⇒ v ≺ u : A,
etc.

Lemma 6 (Closed term evaluation map). There exists a monotone map valueA : OkC(A)→
OkV(A) such that value a = v if and only if a 7−→∗ v.

Proof. The definition of a ≺ a : A shows that every good closed term evaluates to some
good value. Determinism shows this value is unique, so we can name it value a. And given
a ≺ b : A, applying its definition and this uniqueness shows that value a ≺ value b : A,
showing monotonicity.

Lemma 7 (Closed term application map). If a1 ≺ a2 : A→ B and b1 ≺ b2 : A then
a1 b1 ≺ a2 b2 : B. Equivalently, there exists a monotone map applyA,B : OkC(A→ B) ×
OkC(A)→ OkV(B) such that apply (a, b) = value (a b) = v if and only if a b 7−→∗ v.

Proof. Suppose a1 ≺ a2 : A→ B and b1 ≺ b2 : A. Unrolling these assumptions, we have
e1, e2, u1, u2 satisfying:

a1 7−→∗ λX. e1 a2 7−→∗ λX. e2 e1 ≺ e2 : (X : A) ⊢ B

b1 7−→∗ u1 b2 7−→∗ u2 u1 ≺ u2 : A
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From u1 ≺ u2 : A we have (X 7→ u1) ≺ (X 7→ u2) : (X : A), and applying this to e1 ≺ e2 :

(X : A) ⊢ B we have a transitive square:

e1 {X 7→ u1} e2 {X 7→ u1}

e1 {X 7→ u2} e2 {X 7→ u2}

≺

≺ ≺

≺

Taking the diagonal of this square, we have e1 {X 7→ u1} ≺ e2 {X 7→ u2} : B and therefore
v1, v2 such that ei {X 7→ ui} 7−→∗ vi and v1 ≺ v2 : B. Thus for i ∈ {1, 2} we have:

ai bi 7−→∗ (λX. ei) bi 7−→∗ (λX. ei) ui 7−→ ei {X 7→ ui} 7−→∗ vi

and v1 ≺ v2 : B as desired.

Lemma 8 (Closed term pairing). If a1 ≺ a2 : A and b1 ≺ b2 : B then (a1, b1) ≺ (a2, b2) :

A× B.

Proof. Applying our assumptions’ definitions we have v1, v2, u1, u2 such that:

a1 7−→∗ v1 a2 7−→∗ v2 v1 ≺ v2 : A

b1 7−→∗ u1 b2 7−→∗ u2 u1 ≺ u2 : B

From this we have:

(a1, b1) 7−→∗ (v1, b1) 7−→∗ (v1, u1) (a2, b2) 7−→∗ (v2, b2) 7−→∗ (v2, u2)

And (v1, u1) ≺ (v2, u2) : A× B because v1 ≺ v2 : A and u1 ≺ u2 : B, which is what we
wished to show.

Lemma 9 (Closure under stepping). ≺ is closed under 7−→∗; that is, if a ≺ b : A and
(a ′ 7−→∗ a) ∨ (a 7−→∗ a ′) and (b ′ 7−→∗ b) ∨ (b 7−→∗ b ′), then a ′ ≺ b ′ : A.

Proof. a 7−→∗ v and b 7−→∗ u such that v ≺ u : A so by determinism a ′ 7−→∗ v and
b ′ 7−→∗ u, thus a ′ ≺ b ′ : A.

Lemma 10 (First-order agreement on values). If v ∈ OkV( eq
A) then ε ⊢ v :

eq
A and moreover

for v, u ∈ OkV( eq
A):

v ≺ u :
eq
A ⇐⇒ JvK ⩽ JuK : J

eq
AK ⇐⇒ v ⩽ u :

eq
A

(To be precise, by JvK : J
eq
AK we mean the map Jε ⊢ v :

eq
AK : Poset(JεK, J

eq
AK) applied to the

empty environment () : JεK.)

Proof. By induction on
eq
A. To show ε ⊢ v :

eq
A, in each case we apply the definition of v ≺ v :

eq
A

(e.g. for
eq
A1× eq

A2 we find that v = (u1, u2) for some u1, u2 ∈ OkV( eq
A1)) followed by applying

our inductive hypotheses and the following typing rules (here specialized to Γ = ε):

unit

ε ⊢ () : 1

pair
(ε ⊢ ei : Ai)i

ε ⊢ (e1, e2) : A1 ×A2

inj
ε ⊢ e : Ai

ε ⊢ ini e : A1 +A2

set
(ε ⊢ ei : eq

A)i

ε ⊢ {ei}i : { eq
A}
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As for equivalence of the orderings, observe that:

J()K = () : J1K J(v, u)K = (JvK, JuK) : J
eq
A×

eq
BK

Jini vK = ini JvK : J eq
A+

eq
BK J{vi}iK = {JviK}i : J{ eq

A}K

and therefore:

J()K ⩽ J()K : J1K ⇐⇒ ⊤
J(v1, u1)K ⩽ J(v2, u2)K : J eq

A×
eq
BK ⇐⇒ Jv1K ⩽ Jv2K : J eq

AK ∧ Ju1K ⩽ Ju2K : Jeq
BK

Jini vK ⩽ Jinj uK : J eq
A1 + eq

A2K ⇐⇒ i = j ∧ JvK ⩽ JuK : J
eq
AiK

J{vi}iK ⩽ J{uj}jK : J{ eq
A}K ⇐⇒ {JviK}i ⊆ {JujK}j ⇐⇒ (∀i, ∃j) JviK = JujK : J eq

AK

In each case, these coincide (after applying our inductive hypothesis) with the rules defining
v ≺ u :

eq
A and v ⩽ u :

eq
A, except for {vi}i ≺ {uj}j : { eq

A}, which has the additional premise
(∀j) uj ≺ uj : eq

A; but this is satisfied by the assumption {uj}j ∈ OkV({ eq
A}). Thus inductively

all three preorders coincide on good values of equality types.

Lemma 11 (Bottom is bottom). ⊥L ∈ OkC(L) and (∀a ∈ OkC(L)) ⊥L ≺ a : L.

Proof. By induction on L:

Case 1: Follows trivially from ⊥1 7−→ () and the relation at 1.

Case L1 × L2: We have a 7−→∗ (v1, v2) for good vi and by IH we have ⊥Li
≺ vi : Li. Thus by

closed term pairing (⊥L1
,⊥L2

) ≺ (v1, v2) : L1 × L2 and since ⊥L1×L2
7−→ (⊥L1

,⊥L2
)

by closure under stepping we have what we desire.

Case {
eq
A}: Since ⊥{

eq
A} 7−→ {} it suffices to show {} ≺ v : {

eq
A} for v ∈ OkV({ eq

A}). This follows
from lr set; the first premise is vacuous and the second follows from goodness of v.

Lemma 12 (Join is join). a ∨L b is the least upper bound of a, b ∈ OkC(L) with respect
to the logical relation. That is, a ≺ a ∨L b : L and b ≺ a ∨L b : L and for any c such that
a ≺ c : L and b ≺ c : L we have a ∨L b ≺ c : L.

Proof. By closure under stepping it suffices to show the same for only good values. For this
it suffices to show that Jvalue (v ∨L u)K = JvK ∨ JuK because by lemma 10 the semantic
ordering and the logical relation ordering agree, so a least upper bound in one is a least
upper bound in the other. We show this by induction on L:

Case 1: Follows from () ∨L () 7−→∗ () and the trivial order on 1.

Case L×M: Then we have
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Jvalue ((v1, v2) ∨L×M (u1, u2))K
= J(value (v1 ∨L u1), value (v2 ∨M u2))K calculation
= (Jvalue (v1 ∨L u1)K, Jvalue (v2 ∨M u2)K) calculation
= (Jv1K ∨ Ju1K, Jv2K ∨ Ju2K) inductive hypothesis
= (Jv1K, Jv2K) ∨ (Ju1K, Ju2K) join in product semilattice
= J(v1, v2)K ∨ J(u1, u2)K calculation

Case {
eq
A}: We have

Jvalue ({⃗v} ∨{
eq
A} {u⃗})K = J{⃗v, u⃗}K calculation

= {JviK}i ∪ {JujK}j calculation
= J{⃗v}K ∨ J{u⃗}K calculation

Lemma 13 (Discrete contexts make terms equivalent). If e ≺ f : ⌈Γ⌉ ⊢ A and γ1 ≺ γ2 : Γ

then γ1(e) ≡ γ2(f) : A.

Proof. From γ1 ≺ γ2 : Γ we have γ1 ≡ γ2 : ⌈Γ⌉ because ⌈Γ⌉ restricts to only discrete
hypotheses x :: A ∈ Γ for which we know γ1(x) ≡ γ2(x) : A. Thus applying e ≺ f : ⌈Γ⌉ ⊢ A

we have γ1(e) ≡ γ2(f) : A as desired.

2.4.3 Proof of the fundamental theorem

We now have the groundwork to prove the fundamental theorem, starting with the crucial
case of fixed point expressions fix e.

Theorem 3 (Fundamental theorem). If Γ ⊢ e : A then e ≺ e : Γ ⊢ A.

Proof. Unrolling the definition of the logical relation, we may assume γ1 ≺ γ2 : Γ and wish
to show from this that γ1(e) ≺ γ2(e) : A. We do this by induction on Γ ⊢ e : A.

Case
Γ ⊢ e : □(

fix
L→

fix
L)

Γ ⊢ fix e :
fix
L

. We wish to show that

fix
fix
L γ1(e) ≺ fix

fix
L γ2(e) : fix

L

By our inductive hypothesis we have γ1(e) ≺ γ2(e) : □(fix
L→

fix
L); applying this we have

v1, v2 such that γi(e) 7−→∗ [vi] and v1 ≡ v2 :
fix
L→

fix
L. Thus for i ∈ {1, 2}:

fix
fix
L γi(e) 7−→∗ fix

fix
L [vi] 7−→ iter

fix
L(vi, ⊥

fix
L, vi ⊥

fix
L)

Let fi(u) = apply (vi, u) for brevity. Then applying lemmas 6 and 7 we have:

iter
fix
L(vi, ⊥

fix
L, vi ⊥

fix
L) 7−→∗ iter

fix
L(vi, value ⊥

fix
L, fi(value ⊥

fix
L))
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By bottom-is-bottom we have value ⊥
fix
L ≺ fi(⊥

fix
L) : fix

L. To understand the way evaluation
will proceed from here, consider the generalized situation iter

fix
L(vi, u, fi(u)) where

u ≺ fi(u) : fix
L. This steps like so:

iter
fix
L(vi, u, fi(u)) 7−→∗

{
u if u = fi(u) : eq

A

iter
eq
A(v, fi(u), fi(fi(u))) otherwise

Starting with u = ⊥
fix
L, this calculates the sequence u, fi(u), f2i (u), f3i (u), . . . until the

first k such that fki (u) = fk+1
i (u) :

fix
L and returns fki (u). Note that fi : OkC(fix

L)→ OkV(fix
L)

is monotone by lemma 7 and therefore this sequence ascends in the logical relation:
fji(u) ≺ fj+1

i (u) :
fix
L. Also bymonotonicity of apply, since v1 ≡ v2 :

fix
L→

fix
L andu ≡ u :

fix
L

by partial reflexivity, we have inductively that fj1(u) ≡ fj2(u) : fix
L. By lemma 10 these also

hold in the semantic order, so the denotations both ascend Jfji(u)K ⩽ Jfj+1
i (u)K : J

fix
LK

and coincide Jfj1(u)K = Jfj2(u)K : Jfix
LK. By the ascending chain condition on J

fix
LK we know

there must be some k such that Jfk1(u)K = Jfk+1
1 (u)K; and as the sequences for f1, f2

coincide, Jfk1(u)K = Jfk+1
1 (u)K = Jfk2(u)K = Jfk+1

2 (u)K. Applying lemma 10 again this
shows fki (u) = fk+1

i (u) :
fix
L, and therefore fki (u) for the least such k is the value we

terminate with; since fk1(u) ≡ fk2(u) : fix
L, applying closure under stepping we are done.

Cases
X : A ∈ Γ

Γ ⊢ X : A

x :: A ∈ Γ

Γ ⊢ x : A
. Follows directly from γ1 ≺ γ2 : Γ .

Case
Γ, X : A ⊢ e : B

Γ ⊢ λX. e : A→ B
. What we wish to show is equivalent to:

γ1(λX. e) ≺ γ2(λX. e) : A→ B

⇐⇒ λX. γ1(e) ≺ λX. γ2(e) : A→ B

⇐⇒ γ1(e) ≺ γ2(e) : (X : A) ⊢ B

For the last it suffices to assume a1 ≺ a2 : A and show the transitive square at the
logical relation for B:

e {γ1, X 7→ a1} e {γ2, X 7→ a1}

e {γ1, X 7→ a2} e {γ2, X 7→ a2}

≺

≺ ≺

≺

By our IH we have (∀σ ≺ σ ′ : Γ, X : A) σ(e) ≺ σ ′(e) : B, so it suffices to show the
transitive square at the logical relation for Γ, X : A:

(γ1, X 7→ a1) (γ2, X 7→ a1)

(γ1, X 7→ a2) (γ2, X 7→ a2)

≺

≺ ≺

≺
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This holds by γ1 ≺ γ2 : Γ and a1 ≺ a2 : A and the definition of the logical relation for
contexts.

Case
Γ ⊢ e : A→ B Γ ⊢ f : A

Γ ⊢ e f : B
. We wish to show γ1(e) γ1(f) ≺ γ2(e) γ2(f) : B. By IH

we have γ1(e) ≺ γ2(e) : A→ B and γ1(f) ≺ γ2(f) : A. What we wish to show then
follows from lemma 7.

Case
Γ ⊢ () : 1

. Trivial.

Case
(Γ ⊢ ei : Ai)i

Γ ⊢ (e1, e2) : A1 ×A2

. Apply our inductive hypotheses to get γi(ej) 7−→∗ vi,j with

v1,j ≺ v2,j : Aj; this shows (v1,1, v1,2) ≺ (v2,1, v2,2) : A1 ×A2 and sinceγi((e1, e2)) =

(γi(e1), γi(e2)) 7−→∗ (vi,1, γi(e2)) 7−→∗ (vi,1, vi,2) by closure under stepping we are
done.

Case
Γ ⊢ e : A1 ×A2

Γ ⊢ πi e : Ai

. By IH we have γj(e) 7−→∗ (v1,j, v2,j) with vi,1 ≺ vi,2 : Ai; thus we

have γj(πi e) = πi γj(e) 7−→∗ πi (v1,j, v2,j) 7−→ vi,j and we are done.

Case
Γ ⊢ e : Ai

Γ ⊢ ini e : A1 +A2

. By IH we have γj(e) 7−→∗ vj for some v1 ≺ v2 : Ai. Applying

the definition of the LR we have ini v1 ≺ ini v2 : A1 +A2 and since γj(ini e) =

ini γj(e) 7−→∗ ini vj by closure under stepping we are done.

Case
Γ ⊢ e : A1 +A2 (Γ, Xi : Ai ⊢ fi : B)i

Γ ⊢ case e of (ini Xi � fi)i : B
. By IH for e and the LR for A1 + A2 we

have γj(e) 7−→∗ ini vj for some i and v1 ≺ v2 : Ai. Using this and our IH for fi we
have fi {γ1, Xi 7→ v1} ≺ fi {γ2, Xi 7→ v2} : B. Then by calculation:

γj(case e of (ini Xi � fi)i) 7−→∗ case ini vj of (ini Xi � γj(fi))i

7−→ fi {γj, Xi 7→ vj}

and by closure under stepping we are done.

Case
⌈Γ⌉ ⊢ e : A

Γ ⊢ [e] : □A
. By our IH and lemma 13 we have for some vi that γi(e) 7−→∗ vi with

v1 ≡ v2 : A. Thus we have γi([e]) = [γi(e)] 7−→∗ [vi] and by the definition of the LR
for □A we are done.

Case
Γ ⊢ e : □A Γ, x :: A ⊢ f : B

Γ ⊢ let [x] = e in f : B
. By our IH for e and the logical relation for □A we
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have γi(e) 7−→∗ [vi] for some v1 ≡ v2 : A. Then using this and applying our IH for f
we have f {γi, x 7→ vi} 7−→∗ ui for some u1 ≺ u2 : B. Then we have:

let [x] = γi(e) in γi(f) 7−→∗ let [x] = [vi] in γi(f)

7−→ f {γi, x 7→ vi}

7−→ ui

And by closure under stepping we are done.

Case
Γ ⊢ ⊥ : L

. By bottom is bottom.

Case
(Γ ⊢ ei : L)i

Γ ⊢ e1 ∨ e2 : L
. Applying our IH we have γ1(ei) ≺ γ2(ei) : L; since join is join we

know in particular that ∨ is a monotone operator on good closed terms and therefore
γ1(e1) ∨ γ1(e2) ≺ γ2(e1) ∨ γ2(e2) : L as desired.

Case
(⌈Γ⌉ ⊢ ei : eq

A)i

Γ ⊢ {ei}i : { eq
A}

. Applying lemma 13 we have by our IH that γ1(ei) ≡ γ2(ei) : eq
A and

thus for some vi,j we have γj(ei) 7−→∗ vi,j with vi,1 ≡ vi,2 :
eq
A. Then by calculation we

have γj({ei}i) 7−→∗ {vi,j}i and applying lr set (using partial reflexivity for its second
premise) we have {vi,1}j ≺ {vi,2}i : { eq

A} and by closure under stepping we are done.

Case
Γ ⊢ e : {

eq
A} Γ, x ::

eq
A ⊢ f : L

Γ ⊢ for (x ∈ e) f : L
. We wish to show that

for (x ∈ γ1(e)) γ1(f) ≺ for (x ∈ γ2(e)) γ2(f) : L

By our IH we have γ1(e) ≺ γ2(e) : { eq
A}. Applying the definition of this, let vi,j ∈ OkV( eq

A)

and ai,j be defined by:

{vi,j}j = value (γi(e)) ai,j = f {γi, x 7→ vi,j}

From the logical relation we have (∀j, ∃k) v1,j ≺ v2,k :
eq
A. From this, our IH for f,

and the definition of the logical relation for contexts we have (∀i, ∃j) a1,i ≺ a2,j : eq
A.

Observe that:

for (x ∈ γi(e)) γi(f) 7−→∗ for (x ∈ {vi,j}j) γi(f)

7−→∗ ⊥L ∨L f {γi, x 7→ vi,1} ∨L f {γi, x 7→ vi,2} ∨L . . .

= ⊥L ∨L ai,1 ∨L ai,2 ∨L . . .

Then by closure under stepping we wish to show:

40



(⊥L ∨L a1,1 ∨L a1,2 ∨L . . . ) ≺ (⊥L ∨L a2,1 ∨L a2,2 ∨L . . . ) : L

Applying bottom is bottom and join is join, this follows from (∀i, ∃j) a1,i ≺ a2,j : eq
A,

because then transitively

a1,i ≺ a2,i ≺ (⊥L ∨L a2,1 ∨L a2,2 ∨L . . . ) : L

Showing that the latter is an upper bound of each a1,i and since (⊥L ∨L a1,1 ∨L

a1,2 ∨L . . . ) is least among such upper bounds, we have what we desire.

Case
(⌈Γ⌉ ⊢ ei : eq

A)i

Γ ⊢ e1 = e2 : bool
. By lemma 13 for some vi,j we have γj(ei) 7−→∗ vi,j such that

vi,1 ≡ vi,2 :
eq
A. It suffices to show that (v1,1 = v2,1) ≡ (v1,2 = v2,2) : bool. Since

pretty plainly true ≺ true : bool and false ≺ false : bool (by the same reasoning as
in the case for {ei}i), and since v1,j = v2,j steps to either true or false depending on
whether v1,j = v2,j : eq

A, it suffices to show that v1,1 = v2,1 :
eq
A ⇐⇒ v1,2 = v2,2 :

eq
A.

By lemma 10 we know that this decidable ordering test coincides with equivalence in
the logical relation, thus this holds because vi,1 ≡ vi,2 :

eq
A.

Case
⌈Γ⌉ ⊢ e : {1}

Γ ⊢ empty? e : 1+ 1
. Applying our IH and lemma 13 we have γ1(e) ≡ γ2(e) : {1}.

This means we have some v⃗, u⃗ such that γ1(e) 7−→∗ {⃗v} and γ2(e) 7−→∗ {⃗v} and
{⃗v} ≡ {u⃗} : {1}. This implies that v⃗ is empty if and only if u⃗ is empty. In one case
empty? γi(e) 7−→∗ in1 (); in the other, in2 (). So by closure under stepping it suffices to
show inj () ∈ OkV(1+ 1) for j ∈ {1, 2}; which it is by unrolling the definitions involved.

Case
Γ ⊢ e : □(A1 +A2)

Γ ⊢ split e : □A1 +□A2

. By our IH and the LR for □(A1+A2) we have for some i ∈

{1, 2} and v1 ≡ v2 : Ai that γj(e) 7−→∗ [ini vj]. Then γj(split e) 7−→∗ split [ini vj] 7−→
ini [vj], and using the definition of the LR we have ini [v1] ≺ ini [v2] : □A1 +□A2 and
by closure under stepping we are done.
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Chapter 3

Seminaïve Evaluation

In chapter 2 we presented Datafun’s syntax and semantics. These semantics are straight-
forward to implement directly; implementing them efficiently is more difficult. Datalog has
decades of well-studied implementation and optimization techniques. To explore whether
these techniques can be transferred to Datafun, in this chapter we’ll examine just one classic
Datalog optimization, seminaïve evaluation, which makes practical Datalog and Datafun’s
defining feature: iterative fixed points.

In §3.1 we’ll see how the direct approach to finding fixed points wastes time by rediscov-
ering previously-known facts at each iteration, and how seminaïve evaluation fixes this by
computing the differences or changes between iterations. We therefore see seminaïve evalu-
ation as a matter of incremental computation, that is, efficiently responding to change. To
apply this insight, in §3.2 we adapt prior work on the incremental lambda calculus (Cai et al.,
2014) to construct a category of incrementalizable monotone maps capable of interpreting
Datafun’s semantics. Using this construction as a guide, our central contribution (§3.4) is a
pair of static Datafun-to-Datafun translations which enable the seminaïve fixed-point-finding
strategy. Finally, we prove these transformations correct using a logical relation (§3.5).

3.1 Seminaïve evaluation as incremental computation
Consider the following Datalog program:

path(X,Z)← edge(X,Z).
path(X,Z)← edge(X, Y), path(Y, Z).

Suppose edge denotes a linear graph, {(1, 2), (2, 3), . . . , (n− 1, n)}. Then path will denote
reachability by a sequence of one or more edges, {(i, j) | 1 ⩽ i < j ⩽ n}, or the transitive
closure of edge. How can we compute this? The simplest approach is to begin with nothing
in the path relation and repeatedly apply its rules until nothing more is deducible. We can
make this strategy explicit by time-indexing the path relation:

pathi+1(X,Z)← edge(X,Z).
pathi+1(X,Z)← edge(X, Y), pathi(Y, Z).

When we index a relation in this way, the indexed relation at time i will contain exactly those
facts deducible by applying the original rules at most i times. For instance, since the rules for
path append edges one at a time, we can show by induction that pathi contains exactly the
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nonempty paths of i or fewer edges. By omission path0 = ∅: there are no empty nonempty
paths. Inductively assuming for some i ⩾ 0 that pathi contains the nonempty paths of at
most i edges, note that “a nonempty path of length at most i+ 1” is the same as “an edge,
optionally followed by a nonempty path of length at most i”. The singleton edges are included
by the first clause, and edges followed by paths by the second clause (applying our inductive
hypothesis); so pathi+1 contains exactly the paths of length at most i+ 1 as desired.

The first clause pathi+1(X,Z)← edge(X,Z) ensures pathi+1 includes all 1-edge paths;
pathi+1(X,Z)← edge(X, Y), pathi(Y, Z) includes all paths formed by prepending an edge
to a path from pathi, i.e. (by our inductive hypothesis) paths of between 2 and i+ 1 edges.
So pathi+1 contains exactly the paths of length 1 to i+ 1, as desired.

Unfortunately, this strategy re-deduces each previously known fact on every subsequent
iteration. For example, suppose pathi(j, k) holds. Then at step i+ 1 the second rule deduces
pathi+1(j− 1, k) from edge(j− 1, j) ∧ pathi(j, k). But since pathi+1(j, k) holds (a path of
length at most i is also a path of length at most i + 1), we perform the same deduction at
time i+ 2, and again at i+ 3, i+ 4, etc.

For our linear graph, it’s easy to calculate how much work these re-deductions waste. The
longest path in a linear graph of n nodes has n− 1 edges, so we take n steps to discover a
fixed point pathn−1 = pathn. Since step i involves |pathi| =

∑i
j=1 n−j ∈ Θ(i ·n) deductions,

we make Θ(n3) deductions in total. There being only Θ(n2) paths in the final result, this is
terribly wasteful; hence we term this naïve evaluation.

Now let’s move from Datalog to Datafun.1 The transitive closure of edge is the least fixed
point of the monotone function step defined by:

step s = edge ∪ {(x, z) | (x, y) ∈ edge, (y, z) ∈ s}

The naïve way to compute this is to simply iterate step, computing pathi = stepi ∅ inductively
by letting:

path0 = ∅ pathi+1 = step pathi

But as before, pathi ⊆ step pathi; each iteration re-computes the paths found by its prede-
cessor. We’d rather not compute the entire set, step pathi, but instead find a smaller subset
of new paths, let’s call them dpathi, such that pathi ∪ dpathi = step pathi. The smallest such
set is of course step pathi \ pathi, but we won’t need this most-precise difference to prove
our strategy correct, and the freedom to approximate can be useful for avoiding unnecessary
work. Our iteration strategy then becomes:

path0 = ∅ pathi+1 = pathi ∪ dpathi

dpath0 = ? dpathi+1 = ?

The base case is easily solved by letting dpath0 = step ∅. This wastes no work since there are
no previously-known paths to be rediscovered. In the inductive case, we need to compute
dpathi+1 from pathi and dpathi. Let’s imagine we have a function that does this, called step ′:

path0 = ∅ pathi+1 = pathi ∪ dpathi

dpath0 = step ∅ dpathi+1 = step ′ pathi dpathi

1 In this section we do not bother distinguishing monotone variables X or discrete expressions e, as it muddies
our examples to no benefit.
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What must step ′ satisfy to prove this iteration strategy correct? We wish to show inductively
that step pathi = pathi+1 for all i. The base case is trivial. So assuming step pathi = pathi+1,
let’s look at what we wish to prove and simplify it:

step pathi+1 = pathi+2 what we wish to show
step (pathi ∪ dpathi) = pathi+1 ∪ dpathi+1 apply definitions
step (pathi ∪ dpathi) = step pathi ∪ step ′ pathi dpathi apply IH and definitions

So it suffices for step ′ to have the following property:

step (s ∪ ds) = step s ∪ step ′ s ds

Intuitively speaking, step ′ s ds captures how step’s output changes in response to changing
input: as s grows to s ∪ ds, how does step s grow to step (s ∪ ds)? This makes sense:
our iterations are the outputs of step applied to increasing inputs. To compute the changes
between them, we want to know how step’s output responds to growth in its input.

The next question is: can we find a step ′ with this property? We can: for instance,
step ′ s ds = step (s ∪ ds) \ step s, or the even simpler step ′ s ds = step (s ∪ ds). While
technically correct, these solutions are not efficient: if we plug them into our revised iteration
strategy, we find ourselves repeatedly calling step on ever-growing inputs, returning us to
naïve iteration. So let’s examine the behavior of step (s ∪ ds) to see if we can find a better
alternative:

step (s ∪ ds)

= edge ∪ {(x, z) | (x, y) ∈ edge, (y, z) ∈ s ∪ ds}

= edge ∪ {(x, z) | (x, y) ∈ edge, (y, z) ∈ s} ∪ {(x, z) | (x, y) ∈ edge, (y, z) ∈ ds}

= step s ∪ {(x, z) | (x, y) ∈ edge, (y, z) ∈ ds}

Thus, a satisfactory definition of step ′ is:

step ′ s ds = {(x, z) | (x, y) ∈ edge, (y, z) ∈ ds}

Is this efficient? Plugging this into our iteration strategy:

path0 = ∅ pathi+1 = pathi ∪ dpathi

dpath0 = step ∅ dpathi+1 = step ′ pathi dpathi

= edge = {(x, z) | (x, y) ∈ edge, (y, z) ∈ dpathi}

Applying this to our original linear graph example, edge = {(0, 1), (1, 2), . . . , (n− 1, n)},
we find:

dpath0 = {(i, i+ 1) | 0 ⩽ i < i+ 1 ⩽ n}

dpath1 = {(i, i+ 2) | 0 ⩽ i < i+ 2 ⩽ n}

dpath2 = {(i, i+ 3) | 0 ⩽ i < i+ 3 ⩽ n}

...
dpathk = {(i, i+ k+ 1) | 0 ⩽ i < i+ k+ 1 ⩽ n}
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Thus dpathk captures exactly the paths of length k, so each path is discovered exactly once:
we have avoided redundant work by computing only the change between iterations of our
step function.

The problem of seminaïve evaluation for Datafun reduces to automatically finding func-
tions, like step ′, that efficiently compute the change in a function’s output given a change
to its input. This is a problem of incremental computation, and since Datafun is a functional
language, we use an approach rooted in the incremental λ-calculus (Cai et al., 2014; Giarrusso,
2020; Giarrusso et al., 2019).

3.2 Change structures for Datafun
To solve the problem of computing how a function’s output changes in response to its input,
we must first make precise the notion of change for each type in our language. To do this,
incremental λ-calculi associate every type A with a change structure. In our case, noting that
Datafun types denote posets, we define change structures as follows:

Definition 14. A change structure A consists of a poset VA, a poset ∆A, and a relation RA ⊆
∆A× VA× VA. For dx : ∆A and x, y : VA, we will write (dx, x, y) ∈ RA interchangeably
as dx ▷ x ↪→ y : A. This relation must satisfy three properties:

Functionality If dx ▷ x ↪→ y : A and dx ▷ x ↪→ z : A then y = z.
Soundness If dx ▷ x ↪→ y : A then x ⩽A y.

Zero changes If x : VA there is some dx : ∆A such that dx ▷ x ↪→ x : A.

Some useful terminology and notation: We can think of elements dx ∈ ∆A as changes
or “diffs” to values x ∈ VA. The relation RA tell us how changes affect values: we gloss
dx ▷ x ↪→ y : A as “dx changes x into y”. We say that dx is a valid change to x if there is
some y such that dx ▷ x ↪→ y : A. When dx ▷ x ↪→ x we call dx a zero change to x; when
we need to pick such a change we write 0x. By the axiom of choice, the zero changes property
is equivalent to the existence of such a 0 function.

Although we use multi-letter variable names prefixed with “d” for elements dx, dy : ∆A of
delta posets, this is merely a naming convention; we could instead use single-letter variables
like p, q : ∆A with the same meaning.

To motivate our three properties, it will help to consider an example of a change structure
corresponding to an important Datafun type: finite sets {

eq
A}. Recall that our goal is to speed

up fixed point computation. Since iterations toward a fixed point grow monotonically, in
Datafun we only need increasing changes. Therefore, changes to sets are themselves sets, to
be unioned in:

V{
eq
A} = {

eq
A} ∆{

eq
A} = {

eq
A}

x ∪ dx = y

dx ▷ x ↪→ y : {
eq
A}

Functionality says that dx ▷ x ↪→ y : {
eq
A} must be a partial function from (dx, x) to y. In

this case, it’s a total function: set union. Soundness requires that all changes are increasing,
which is true since x ⊆ x ∪ dx. Finally, zero changes holds since x ∪ ∅ = x; one can leave a
set unchanged by adding nothing.2

2 Indeed, sets have not only zero changes but all increasing changes: for any x ⩽ y there is a dx such that
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We’ll see more examples of change structures later, including ones where the validity
relation is a partial rather than a total function, but first, let’s revisit our transitive closure
example from §3.1. Using change structures we can generalize the relation between step and
step ′. We call step ′ a derivative, because it tells us how step’s output changes in respond to its
input changing:

Definition 15. A derivative of a monotone map f : A→ B between change structures A, B is
a monotone map f ′ : □VA→ ∆A→ ∆B satisfying the law (for all x, y, dx):

dx ▷ x ↪→ y : A =⇒ f ′ x dx ▷ f x ↪→ f y : B

We say a derivative, not the derivative, because derivatives are not necessarily unique. This is
because changes are not necessarily unique: for fixed x, y there may be many dx such that
dx ▷ x ↪→ y.

Applying this definition to our change structure for finite sets, we recover the relationship
we needed between step and step ′ in §3.1 for seminaïve evaluation:

ds ▷ s ↪→ t : {
eq
A} =⇒ step ′ s ds ▷ step s ↪→ step t : {

eq
A}

iff

s ∪ ds = t =⇒ step s ∪ step ′ s ds = step t

iff

step (s ∪ ds) = step s ∪ step ′ s ds

This generalization is useful because differentiable maps (that is, maps possessing a derivative
in the above sense) compose; in fact, they form a category:

Definition 16. The category ∆Poset has as objects change structures A,B and as morphisms
differentiable monotone maps f : VA → VB, that is, maps having at least one derivative
f ′ : □VA→ ∆A→ ∆B (also monotone). Morphism composition and the identity morphism
are both as in Poset.

Proof. Of course, for this to be a category we need to show that: (1) the identity map is
differentiable; (2) the composition of two differentiable maps is differentiable. We also need
associativity and identity of composition, but these follow from the same in Poset. The
derivative for identity is trivial, while the derivative for composition follows the pattern of
the chain rule from calculus:

id ′ x dx = dx (g ◦ f) ′ x dx = g ′ (f x) (f ′ x dx)

That id ′ is a derivative of id is straightforward, while for composition we need to pick maps
f ′, g ′ which are derivatives of f, g respectively; then, applying the definition of derivatives:

dx ▷ x ↪→ y

=⇒ f ′ x dx ▷ f x ↪→ f y

=⇒ g ′ (f x) (f ′ x dx) ▷ g (f x) ↪→ g (f y)

dx ▷ x ↪→ y : {
eq
A}; for instance one may let dx = y \ x, or indeed just y. We call this property completeness, as

it is the converse of soundness. However, while our change structure for sets is complete, we will later observe
that completeness is troublesome at function types, so we do not insist on it in general.
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We also need id ′ x dx and (g ◦ f) ′ x dx to be monotone in dx, which they are, for straightfor-
ward compositional reasons; in general, for the remainder of §3.2 and 3.3, we omit showing
that functions are monotone unless the argument is non-obvious.

In the next section we will sketch the most important structures in ∆Poset needed to support
Datafun’s semantics, providing a recipe for incrementalizing Datafun. Applied correctly, this
will let us automatically find derivatives for functions used by fix expressions, allowing us to
employ the seminaïve evaluation strategy for finding fixed points faster.

3.3 The structure of ∆Poset
We should note up front that ours is only one among many reasonable notions of change
structure. For instance, Giarrusso (2020) defines both basic change structures (definition
12.1.1), consisting only of a delta-set and a relation, and the more elaborate change structures
(definition 13.1.1) that have an update operator ⊕ : A × ∆A → A, a difference operator
⊖ : A×A→ ∆A, and composition of changes ⊚ : ∆A× ∆A→ ∆A; while Alvarez-Picallo
(2020) uses a definition based on monoid actions. We will compare these with our approach in
more detail in §5.2, but the “big picture” difference is that we are pervasively concerned with
monotone functions, increasing changes, and higher-order computation; most of our choices
flow from one more more of these considerations.

Our eventual destination is a static transformation on Datafun source code which imple-
ments seminaïve evaluation (§3.4). This transformation, originally presented by Arntzenius
and Krishnaswami (2020), predates the construction of ∆Poset presented here and is inde-
pendent of it. The transformation itself is quite intricate; our aim in presenting ∆Poset is
to break its core concepts down into small pieces, showing how this complexity arises and
suggesting potential alternatives for future investigation. In service of this goal, we have
chosen what seems the simplest definition of change structure that both supports the features
of Datafun and provides useful intuition. Ultimately, however, we deploy a logical relations
argument to prove the translation correct (§3.5). A reader who does not care for a categorical
view and is prepared to jump “in the deep end,” therefore, may skim this section or jump
straight to the definition of the seminaïve transformation itself in §3.4.

Recall that the structures we needed to interpret Datafun into the category Poset in §2.3.2
and 2.3.3 were: products, sums, exponentials, a discreteness comonad to interpret □, sets
and semilattice objects, equality-test morphisms, and fixed points. In ∆Poset we will cover
products, sums, exponentials, the discreteness comonad, and fixed points, as they are the
most significant for understanding the broad structure of our approach; the other structures
are straightforward (with the exception of collect(f), which we discuss as for in §3.4.6).

3.3.1 Products

Products and the terminal object in ∆Poset mirror those in Poset:

V1 = 1 V(A× B) = VA× VB

∆1 = 1 ∆(A× B) = ∆A× ∆B

() ▷ () ↪→ () : 1

product change
da ▷ a ↪→ a ′ : A db ▷ b ↪→ b ′ : B

(da, db) ▷ (a, b) ↪→ (a ′, b ′) : A× B
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These satisfy functionality, soundness, and zero changes by invoking the corresponding
properties at A and B. For instance, picking zero changes 0a, 0b for a, b respectively, prod-
uct change tells us (0a, 0b) is a zero change to (a, b).

Finally, the terminal map ⟨⟩, projection πi, and the tupling ⟨f, g⟩ of f : A → B and
g : A→ C are all the same as in Poset (thus inheriting the necessary universal properties),
with derivatives given by:

⟨⟩ : A→ 1 ⟨⟩ ′ a da = ()

πi : A1 ×A2 → Ai π ′
i (x1, x2) (dx1, dx2) = dxi

⟨f, g⟩ : A→ B× C ⟨f, g⟩ ′ a da = (f ′ a da, g ′ a da)

The correctness of ⟨⟩ ′ is trivial; correctness of π ′
i follows by inversion of product change;

and ⟨f, g⟩ ′ is correct by product change and correctness of f ′, g ′.3

3.3.2 Sums

Sums and the initial object also mirror those in Poset:

V0 = 0 V(A+ B) = VA+ VB

∆0 = 0 ∆(A+ B) = ∆A+ ∆B

R0 = ∅

sum change
dx ▷ x ↪→ y : Ai

ini dx ▷ ini x ↪→ ini y : A1 +A2

These satisfy functionality, soundness, and zero changes pretty straightforwardly using the
corresponding properties at A and B. For instance, ini 0x is a zero change to ini x.

The initial map [ ], injection ini, and case-analysis [f1, f2] (given f1 : A1 → C, f2 : A2 →
C) are the same as in Poset (inheriting its universal properties), with derivatives as follows:

[ ] : 0→ A [ ] ′ = [ ] (the domain is empty)
ini : Ai → A1 +A2 in ′

i x dx = ini dx

[f, g] : A1 +A2 → C [f1, f2]
′ (ini x) (inj dx) =

{
f ′i x dx if i = j

anything of type∆C if i ̸= j

Correctness of [ ] ′ is vacuous; correctness of in ′
i follows directly from sum change; but

the definition of [f1, f2] ′ requires explanation. If we take the proposition that [f1, f2] ′ is a
derivative of [f1, f2] and apply the definition of RA1+A2

(namely sum change), we find
that it simplifies to:

dx ▷ x ↪→ y : Ai =⇒ [f1, f2]
′ (ini x) (ini dx) ▷ fi x ↪→ fi y : C

This only constrains the behavior of [f1, f2] ′ (ini x) (inj dx) when i = j; and in this case,
we have f ′i x dx ▷ fi x ↪→ fi y : C as desired. Since the i ̸= j case is unconstrained, any

3 Note that had we chosen to let ∆(A× B) = ∆A+ ∆B, representing a change to a tuple by a change to only
one of its components, this would not allow us to differentiate tupling ⟨f, g⟩, since a change to the input may
cause both components of the output to change simultaneously.
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value of type ∆C will suffice; all we need for differentiability is to show one exists, i.e. that
∆C is inhabited. Fortunately, in this case we have an x : VAi and a differentiable function
fi : Ai → C. Applying zero changes at Ai we can pick a zero-change 0x (although it being a
zero-change is unnecessary; all we need is an element of ∆Ai) and take f ′i x 0x : ∆C. Or, we
could use zero-changes at C instead and take 0(fi x) : ∆C.

This i ̸= j case is related to the partiality of the validity relation: in1 dx is never a valid
change to in2 x. This is hard to avoid given our definition of change structures: to differentiate
ini and [f1, f2] we need ∆(A1 +A2) to include both ∆A1 and ∆A2 somehow; and a change
dx ∈ ∆A1 has no natural meaning applied to a value x ∈ VA2. Furthermore, the fact that the
i ̸= j case is unconstrained – essentially “dead code” – means that if we had defined ∆Poset
morphisms as maps equipped with a particular derivative (rather than merely differentiable)
we would be unable to prove the uniqueness of [f, g] ′ required by the universal property for
sums.⁴

This could, for instance, be addressed by changing the definition of ∆Poset to only require
derivatives to be defined for valid changes. We don’t do this because from a type-theoretic
perspective, this requires a dependent or refinement type, while we want the types of our
derivatives to be simple so our category corresponds closely with a static transformation on
Datafun, a simply-typed language.

3.3.3 Exponentials

The values of the exponentials in ∆Poset capture differentiable, monotone maps:

V(A⇒ B) = differentiable monotone maps VA→ VB, ordered pointwise
= (∆Poset(A,B), {(f, g) : (∀x) f x ⩽ g x})

We might expect changes ∆(A⇒ B) to be given pointwise, as (not necessarily monotone)
functions VA→ ∆B mapping each input to the change in the corresponding output:

∆(A⇒ B) = □VA⇒ ∆B
(∀x) df x ▷ f x ↪→ g x : B

df ▷ f ↪→ g : A⇒ B
✗ not an exponential

However, this choice makes it difficult to differentiate function application. The function
application map eval : (A ⇒ B) × A → B is, of course, given by eval (f, x) = f x. To
differentiate this is to ask for some eval ′ (f, x) (df, dx) that captures how f x changes as both
f and x change simultaneously: supposing df ▷ f ↪→ g and dx ▷ x ↪→ y, how do we find a
change f x ↪→ g y?

Using a pointwise change df : VA→ ∆B, we can find df x ▷ f x ↪→ g x; and applying
differentiability of f we can find some f ′ x dx ▷ f x ↪→ f y. The former handles a change
to the function, the latter a change to the argument. These form two sides of a “square of
changes”:

⁴ We could avoid partiality by defining ini dx ▷ inj x ↪→ inj x : A1 +A2 for i ̸= j; that is, treating currently
“invalid” changes as zero-changes. This unfortunately doesn’t extend to the function case, which as we’ll see
shortly also needs a partial validity relation. Moreover, it doesn’t ensure uniqueness of [f1, f2] ′: although it
requires [f1, f2] ′ (ini x) (inj dx) to be a zero change to fi x when i ̸= j, there may be multiple such zero
changes.
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f x f y

g x g y

df x

f ′ x dx

g ′ x dx

df y?

We need the diagonal of this square. One approach would be to use pointwise function
changes but augment our definition of change structures to allow composing changes, and
find the diagonal by composing sides. Unfortunately, this is more difficult than it appears:
eval ′ is applied to f, x, df, dx, but to compute df y or g ′ x dx we need either y or g. This
seems to require equipping change structures with an operator ⊕A : □VA×∆A→ VA that
extends the validity relation RA from a partial to a total function (since eval ′ is defined for
all inputs, not merely valid ones); then we can recover y = x⊕ dx or g = f⊕ df. But ⊕A→B

is difficult to construct, because we must guarantee that f⊕ df is a monotone function, no
matter the value of df : □VA→ ∆B; it is easy to come up with a df such that λx. f x⊕ df x

(the natural definition of f⊕ df) is non-monotone.⁵
Perhaps there is someway through these difficulties; fortunately, there is a simple approach

that side-steps them entirely: following the original incremental λ-calculus (Cai et al., 2014)
we require function changes to produce the diagonal directly. Since this diagonal depends on
the change dx to the argument, function changes df become two-argument functions:

∆(A⇒ B) = □VA⇒ (∆A⇒ ∆B)

fn change
(∀dx ▷ x ↪→ y : A) df x dx ▷ f x ↪→ g y : B

df ▷ f ↪→ g : A→ B

With this definition, function changes are exactly what is needed to incrementalize function
application f x. A change to a function df ▷ f ↪→ g accepts a change in its argument
dx ▷ x ↪→ y and produces the the change in its output, df x dx ▷ f x ↪→ g y. If we return
to our square of changes, we find it now has a zig-zag shape, with the diagonal filled in but
missing the vertical sides:

f x f y

g x g y

f ′ x dx

g ′ x dx

df x dx

To recover the missing sides, we can apply df to zero-changes 0x and 0y instead of dx:

f x f y

g x g y

f ′ x dx

g ′ x dx

df x dxdf x 0x df y 0y

⁵ We further discuss the issue of monotonicity and pointwise changes in §5.2.2.
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Zero changes thus let us recover a pointwise change λx. df x 0x from any df ▷ f ↪→ g :

A⇒ B.
Note also the mixture of monotonicity and non-monotonicity in □VA ⇒ ∆A ⇒ ∆B.

Since our functions are monotone (increasing inputs yield increasing outputs), we expect
function changes to be monotone with respect to input changes ∆A: a larger increase in the
input yields a larger increase in the output. However, there’s no reason to expect the change
in the output to grow as the base point increases – hence the first argument is discrete, □VA.

Although this nicely solves the problem of differentiating eval, it is not immediately
obvious that RA⇒B is functional, sound, and possesses zero-changes.⁶ The first two are
quite similar, so we’ll tackle them together: Suppose df ▷ f ↪→ g : A⇒ B and likewise
df ▷ f ↪→ h and fix some x ∈ VA. For functionality, we wish to show g x = h x; for
soundness, we wish to show f x ⩽ g x. By zero changes at A we can pick some 0x ▷ x ↪→ x.
Inverting fn change we have df x 0x ▷ f x ↪→ g x : B and likewise df x 0x ▷ f x ↪→ h x.
Then by functionality at B we have g x = h x; and by soundness at B we have f x ⩽ g x.

Showing zero changes is simple but illuminating. By definition, every f : V(A ⇒ B) is
differentiable, and a derivative f ′ of f is exactly a zero change f ′ ▷ f ↪→ f : A⇒ B:

df ▷ f ↪→ f : A→ B

⇐⇒ (∀dx ▷ x ↪→ y : A) df x dx ▷ f x ↪→ f y : B fn change
⇐⇒ df is a derivative of f definition 15

This happens because we’ve defined function changes df ▷ f ↪→ g : A⇒ B to tell us how
function application responds to changes in both the function and its argument. If the function
doesn’t change, this reduces to how the function’s output changes as its argument changes:
exactly what a derivative does.

Finally, to make A ⇒ B an exponential we need function application evalA,B : (A ⇒
B) × A → B (which we have already discussed), and for any f : C × A → B, its currying
λf : C → A ⇒ B. These are defined as in Poset, which ensures their universal property
holds; but since V(A ⇒ B) contains only differentiable maps, besides eval and λf we also
require (λf c) to be differentiable:

⁶ We also promised in a footnote on page 45 to show that completeness was problematic at function types.
In other words, supposing f ⩽ g : A ⇒ B, why can’t we find some df ▷ f ↪→ g? Well, we would need
df x dx ▷ f x ↪→ g y : B whenever dx ▷ x ↪→ y. If we inductively suppose completeness at B, we could pick
such a change, since by monotonicity we can show f x ⩽ g y. Of course, we need df to be defined over all
x, dx, not merely valid ones, but this is nothing the axiom of choice can’t handle. More problematic is that we
need df x dx to be monotone with respect to dx. So merely picking changes is not enough; we have to pick
them in a way that preserves monotonicity.

We conjecture this can be done by strengthening change structures to include (1) monotone completeness and
(2) monotone change composition. Monotone completeness strengthens completeness by requiring an operator
y⊖A x defined for y ⩾ x : VA such that y⊖A x ▷ x ↪→ y : A and which is monotone in y and anti-monotone
in x, that is, x ′ ⩽ x ∧ y ⩽ y ′ =⇒ y ⊖ x ⩽ y ′ ⊖ x ′. Monotone change composition requires a monotone
operator ⊚A : ∆A× ∆A→ ∆A such that if dx ▷ x ↪→ y and dy ▷ y ↪→ z then dy⊚ dx ▷ x ↪→ z. Then we
can define g⊖A⇒B f = λx. λdx. g ′ x dx⊚B (g x⊖B f x) and dg⊚A⇒B df = λx. λdx. dg x dx⊚ df x 0x.
We have not done this because it considerably complicates the definition of change structures and does not

help explain any features of the translation given in §3.4, but it might be an interesting direction for future
work.
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eval (f, x) = f x λf c x = f (c, x)

eval ′ (f, a) (df, da) = df a da (λf) ′ c dc a da = f ′ (c, a) (dc, da)

(λf c) ′ a da = f ′ (c, a) (0c, da)

We’ve already seen how eval ′s correctness follows from fn change. Applying RA⇒B and
RC×A, we find that (λf) ′ is a derivative for λf when f ′ is a derivative for f:

(λf) ′ is a derivative of λf
⇐⇒ (∀dc ▷ c ↪→ c ′ : C) (λf) ′ c dc ▷ λf c ↪→ λf c ′ : A⇒ B

⇐⇒ (∀dc ▷ c ↪→ c ′ : C) (∀da ▷ a ↪→ a ′ : A) (λf) ′ c dc a da ▷ λf c a ↪→ λf c ′ a ′ : B

⇐⇒ (∀ (dc, da) ▷ (c, a) ↪→ (c ′, a ′) : C×A) f ′ (c, a) (dc, da) ▷ f (c, a) ↪→ f (c ′, a ′) : B

⇐⇒ f ′ is a derivative of f

Finally, the correctness of (λf c) ′ follows from that of f ′ by applying 0c ▷ c ↪→ c : C:

f ′ is a derivative of f and 0c is a zero change to c

=⇒ (∀da ▷ a ↪→ a ′ : A) f ′ (c, a) (0c, da) ▷ f (c, a) ↪→ f (c, a ′) : B

⇐⇒ (∀da ▷ a ↪→ a ′ : A) (λf c) ′ a da ▷ (λf c) a ↪→ (λf c) a ′ : B

⇐⇒ (λf c) ′ is a derivative of (λf c)

3.3.4 Semilattice change structures and seminaïve fixed points

We’ve already been introduced to the finite powerset change structure, as our introductory
example in §3.2. But to define it properly as a functor P : ∆Poset→ ∆Poset, inheriting from
the corresponding P on Poset:

VPA = PVA ∆PA = PVA dx ▷ x ↪→ y : PA ⇐⇒ x ∪ dx = y

This finite powerset change structure forms the prototype for our change structures for
semilattices in general, which we need to support various language features, most importantly
fixed points. We saw in §3.1–3.2 that given a function f : PA→ PA and a derivative for it
f ′ : □PA→ PA→ PA we can compute its fixed point seminaïvely as follows:

x0 = ∅ xi+1 = xi ∪ dxi

dx0 = f ∅ dxi+1 = f ′ xi dxi

This takes advantage of the fact that the change to a set is another set, and we apply a
change using set union/semilattice join. Following this pattern, we can endow any semilattice
L : Poset with a similar change structure:

VL = L ∆L = L dx ▷ x ↪→ y : L ⇐⇒ x ∨ dx = y

This satisfies functionality (∨ is a function), soundness (x ⩽ x ∨ y), and zero-changes
(x ∨ ⊥ = x). Let’s call this the semilattice change structure on L. By construction, the finite
powerset change structure PA is the semilattice change structure on PVA; and our seminaïve
fixed point strategy generalizes to any semilattice change structure:
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Definition 17 (semifix). Given a semilattice Lwith no infinite ascending chains and monotone
maps f : L→ L and f ′ : □L→ L→ L, let semifixL (f, f ′) =

∨
i xi be the limit of the ascending

chain defined by:

x0 = ⊥ xi+1 = xi ∨ dxi

dx0 = f ⊥ dxi+1 = f ′ xi dxi

Theorem 18. semifixL (f, f ′) is the least fixed point of f if f ′ is a derivative of f.

Proof. It suffices to show inductively that xi+1 = f xi; from this it follows that xi = fi ⊥, as
in the naïve approach to computing a fixed point. We prove this with essentially the same
argument used in §3.1 (page 44). The base case is x1 = x0 ∨ dx0 = ⊥ ∨ f ⊥ = f ⊥ = f x0,
and the inductive case is:

xi+2 = xi+1 ∨ dxi+1 definition of xi+2

= f xi ∨ f ′ xi dxi inductive hypothesis, definition of dxi+1

= f (xi ∨ dxi) f ′ is a derivative of f
= f xi+1 definition of xi+1

3.3.5 Fixed points and discreteness comonads

Theorem 18 shows we can speed up fixed points by exploiting the power of derivatives. It
may seem as though this justifies a morphism fix : (L⇒ L)→ L : ∆Poset for any semilattice
change structure L satisfying ACC. However, morphisms in ∆Poset must be differentiable:
does fix have a derivative? Prior work (Alvarez-Picallo et al., 2019; Arntzenius, 2017) has
answered this affirmatively. One solution is to find the fixed point of the function change:

fix ′ f df = fix (df (fix f))

How and why this works is non-obvious; we refer the reader to Arntzenius (2017) for a full
explanation. So there is indeed a morphism fix : (L⇒ L)→ L : ∆Poset. However, from the
perspective of our original goal of speeding up fixed point computations, the derivative of this
morphism presents two issues. First, it isn’t actually incremental: computing fix ′ f df using
this derivative requires re-computing fix f as an argument to df!⁷ Second, we would naturally
like to compute fix (df (fix f)) seminaïvely, but we have no guarantee that (df (fix f)) is
differentiable! This requires a higher-order derivative; a coherent theory of higher-order
derivatives and higher-order change structures would be enormously interesting, but we
leave it to future work.

Instead, we deliberately limit the scope of our approach to avoid the need to incrementally
maintain fixed points. As we mentioned in §2.3.1, in Datafun fix is not treated as a monotone
operator; correspondingly the morphisms we require to interpret it are not fix : (L⇒ L)→ L

⁷ The need to recompute fix f could likely be solved by caching intermediate values, which we discuss further in
§5.2.1. Somewhat unusually, in this case we want to cache the previous output of an operation rather than its
previous input.
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but rather fix : □(L ⇒ L) → L. The idea here is that, just as □ in Poset captures non-
monotonicity in an otherwise monotone world, in ∆Poset we can use it to capture non-
differentiability or non-incrementalizability in an otherwise differentiable world.

More concretely, since we only consider increasing changes and □A is ordered discretely,
x ⩽ y : □A ⇐⇒ x = y, the only possible “change” is to stay the same. We can thus extend
the discreteness comonad □ on Poset to a comonad □ on ∆Poset by letting the space of
changes be trivial:

V□A = □VA ∆□A = 1 () ▷ a ↪→ a : □A

This straightforwardly satisfies functionality, soundness, and zero changes. Moreover, it
inherits the monoidal comonad structure of □ from Poset. Fixing some map f : A→ B, the
derivatives of functorial action, extraction, duplication, and distribution are mostly trivial:

□(f) : □A→ □B □(f) ′ x () = ()

εA : □A→ A ε ′
A x () = 0x (see footnote⁸)

δA : □A→ □□A δ ′
A x () = ()

dist×□ :
∏

i□Ai → □
∏

i Ai dist×□
′
x dx = ()

dist□+ : □
∑

i Ai →
∑

i□Ai dist□+
′
(ini x) () = ini ()

Finally, observe that any monotone map f : V□A→ VB is trivially differentiable by letting
f ′ x () = 0(f x), confirming our intuition that differentiable maps □A→ B should coincide
with not-necessarily-differentiable maps A→ B.

3.4 The ϕ and δ transforms
Our goal in this chapter is to automatically speed up computation of fixed points in Datafun
using seminaïve evaluation, replacing fix f by semifix (f, f ′) where f ′ is a derivative for f. The
previous section suggests this is possible: ∆Poset appears capable of interpreting Datafun’s
semantics; its exponential objects consist of differentiable monotonemaps; and its construction
provides a recipe for calculating concrete derivatives witnessing this differentiability. In
this section, we carry out this recipe (with one significant change), producing two static
transformations, ϕ and δ, defined in figure 3.2.

The “speed-up” transform ϕ replaces fix f by semifix (f, f ′) and decorates other ex-
pressions with the information we need to compute f ′. In particular, to find f ′ we need
the “incrementalization” transform, δ, which propagates changes through a program. For
instance, the derivative of (λX. e) depends on how e changes in response to changes in X. In
general, δe computes the change in ϕe given changes to its free variables. The rules defining
δ closely resemble both the incremental λ-calculus’ Derive operator (Cai et al., 2014) and
the derivatives given in the previous section for morphisms in ∆Poset.

Unfortunately, when we consider terms with free variables, there is a gap between deriva-
tives and changes: we cannot simply let f ′ = δf, because we want f ′ to be the derivative of the

⁸ It is again important here that in∆Poset our morphisms are merely differentiable, not equipped with derivatives,
that is, that we do not distinguish morphisms by their derivative. Otherwise naturality of ε would require that
(ε ◦□f) ′ = (f ◦ ε) ′, which requires ε ′ (f x) () = f ′ x (ε ′ x ()) and thus 0(f x) = f ′ x 0x, which is difficult to
guarantee without unique zero-changes.
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Φ1 = 1 ∆1 = 1

Φ{
eq
A} = {Φ

eq
A} (see lemma 19) ∆{

eq
A} = {

eq
A}

Φ(□A) = □(ΦA× ∆ΦA) ∆(□A) = 1

Φ(A× B) = ΦA×ΦB ∆(A× B) = ∆A× ∆B

Φ(A+ B) = ΦA+ΦB ∆(A+ B) = ∆A+ ∆B

Φ(A→ B) = ΦA→ ΦB ∆(A→ B) = □A→ ∆A→ ∆B

figure 3.1 ∆ and Φ type transformations

function f, not the change to it. One way to solve this problem, suggested by the exponential
in ∆Poset, would be to have ϕ decorate every function with its derivative. However, this is
overkill: we only need derivatives for functions used in fixed point computations.

This leads to our significant change. Recall from §3.3.3 that a zero change to a function is
a derivative for it: the problematic gap between derivatives and changes disappears if the
function does not change. We ensure this by giving the fix the argument type □(

fix
L→

fix
L); as

we saw in §3.3.5, the type □A represents values which do not change. Thus, rather than
decorate every function with its derivative, the key strategy of the ϕ transformation is to
decorate expressions of type □A with their zero changes. In this way, we hijack the
□ comonad to track functions that are used inside fixed points and make their derivatives
available where we need them: at fix expressions.

3.4.1 Typing ϕ and δ

In order to decorate expressions with extra information, ϕ also needs to decorate their types.
In figure 3.1 we give a type translation ΦA capturing this. In particular, if e : □A then ϕe

will have type Φ(□A) = □(ΦA × ∆ΦA). The idea is that evaluating ϕe will produce a
pair [(x, dx)] where x : ΦA is the sped-up result and dx : ∆ΦA is a zero change to x. For
example, if e : □(A→ B), then ϕe will compute [(f, f ′)], where f ′ is the derivative of f.

On types other than □A, there is no information we need to add, so Φ simply distributes.
In particular, source programs and sped-up programs agree on the shape of first-order data:

Lemma 19. Φ
eq
A =

eq
A for all equality types

eq
A.

Proof. Induct on
eq
A applying the equations in figure 3.1, recalling from figure 2.1 that the

grammar of equality types is
eq
A ::= 1 |

eq
A×

eq
B |

eq
A+

eq
B | {

eq
A}.

It will also be important that, as in our semilattice change structures in ∆Poset, changes at a
semilattice type L are drawn from the very same type:

Lemma 20. At each semilattice type L, we have ∆L = L.
Proof. Induct on L applying the equations in figure 3.1, recalling from figure 2.1 that the
grammar of semilattice types is L ::= 1 | L1 × L2 | {

eq
A}.

As we’ll see in §3.4.3 and 3.4.4, ϕ and δ are mutually recursive. To make this work, δe
must find the change to ϕe rather than e. So if e : A then ϕe : ΦA and δe : ∆ΦA. However,
so far we have neglected to say what ϕ and δ do to typing contexts. To understand this, it’s
helpful to look at what Φ and ∆Φ do to functions and to □. This is because expressions
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speed-up translation ϕ

ϕX = X ϕx = x

ϕ(λX. e) = λX. ϕe ϕ(e f) = ϕe ϕf

ϕ(ei)i = (ϕei)i ϕ(πi e) = πi ϕe

ϕ(ini e) = ini ϕe ϕ(case e of (ini X � fi)i) = case ϕe of (ini X � ϕfi)i

ϕ⊥ = ⊥ ϕ(e ∨ f) = ϕe ∨ ϕf

ϕ({ei}i) = {ϕei}i ϕ(for (x ∈ e) f) = for (x ∈ ϕe) let [dx] = [0 x] in ϕf

ϕ[e] = [(ϕe, δe)] ϕ(let [x] = e in f) = let [(x, dx)] = ϕe in ϕf

ϕ(e = f) = (ϕe = ϕf) ϕ(empty? e) = empty? ϕe

ϕ(fix e) = semifix ϕe ϕ(split e) ⋆
= case ϕe of

([(ini x, ini dx)] � ini [(x, dx)])i

([(ini x, inj )] � ini [(x, dummy x)])i ̸=j

derivative translation δ

δ⊥ = δ{ei}i = δ(e = f) = δ(fix e) = ⊥

δX = DX δx = dx

δ(λX. e) = λ[x]. λDX. δe δ(e f) = δe [ϕf] δf

δ(ei)i = (δei)i δ(πi e) = πi δe

δ(ini e) = ini δe δ(e ∨ f) = δe ∨ δf

δ[e] = () δ(let [x] = e in f) = let [(x, dx)] = ϕe in δf

δ(empty? e) = empty? ϕe δ(split e) ⋆
= case ϕe of ([(ini , )] � ini ())i

δ(case e of (ini X � fi)i)
⋆
= case split [ϕe], δe of

(ini [x], ini DX � δfi)i

(ini [x], inj � let DX = dummy x in δfi)i ̸=j

δ(for (x ∈ e) f) = (for (x ∈ δe) let [dx] = [0 x] in ϕf)

∨ (for (x ∈ ϕe ∨ δe) let [dx] = [0 x] in δf)

Equations marked with a red star, ⋆
=, use pattern-matching syntax sugar we have not previously

defined; see figure 3.3 for expansions.

figure 3.2 ϕ and δ term translations
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additional desugarings

ϕ(split e) ⋆
= case ϕe of

([(ini x, ini dx)] � ini [(x, dx)])i

([(ini x, inj )] � ini [(x, dummy x)])i ̸=j

= let [z] = ϕe in
case split [π1 z] of
(ini Y � let [x] = Y in

case split [π2 z] of
ini DY � let [dx] = DY in ini [(x, dx)]

ini+1 mod 2 � ini [(x, dummy x)])i

δ(split e) ⋆
= case ϕe of ([(ini , )] � ini ())i

= let [y] = ϕe in case π1 y of (ini � ini ())i∈{1,2}

δ(case e of (ini X � fi)i)
⋆
= case split [ϕe], δe of

(ini [x], ini DX � δfi)i

(ini [x], inj � let DX = dummy x in δfi)i ̸=j

= case split [ϕe] of
(ini Y � let [x] = Y in

(λDX. δfi) (case δe of ini DX � DX

ini+1 mod 2 � dummy x))i

Fresh variables introduced by desugaring are colored pink.

figure 3.3 Additional syntax sugar for ϕ and δ transformations
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denote functions of their free variables. Moreover, in Datafun free variables come in two
flavors, monotone and discrete, and discrete variables are semantically □-ed.

Viewed as functions of their free variables, δe denotes the derivative of ϕe. And just as the
derivative of a unary function f x has two arguments, df x dx, the derivative of an expression
ewith n variables x1, . . . , xn will have 2n variables: the original x1, . . . , xn and their changes
dx1, . . . , dxn.⁹ However, this says nothing yet about monotonicity or discreteness. To make
this precise, we’ll use three context transformations, named according to the analogous type
operators □, Φ, and ∆:

□(X : A) = x :: A □(x :: A) = x :: A

Φ(X : A) = X : ΦA Φ(x :: A) = x :: ΦA,dx :: ∆ΦA

∆(X : A) = DX : ∆A ∆(x :: A) = ε (the empty context)

Otherwise all three operators distribute; e.g. □ε = ε and □(Γ1, Γ2) = □Γ1,□Γ2. Intuitively,
□Γ , ΦΓ , and ∆Γ mirror the effect of □, Φ, and ∆ on the semantics of Γ :

J□ΓK ∼= □JΓK
JΦ(X : A)K ∼= JΦAK
JΦ(x :: A)K ∼= JΦ□AK

J∆(X : A)K ∼= J∆AK
J∆(x :: A)K ∼= J∆□AK

These defined, we can state the types of ϕe and δe:

Theorem 21 (Well-typedness of ϕ, δ). If Γ ⊢ e : A, then ϕe and δe have the following types:

ΦΓ ⊢ ϕe : ΦA

□ΦΓ,∆ΦΓ ⊢ δe : ∆ΦA

Proof. By induction on the derivation of Γ ⊢ e : A, although as we’ll see shortly we will need
weakening (theorem 22) in some places.

As expected, if we view expressions as functions of their free variables, and pretend Γ is a
type, these correspond to Φ(Γ → A) and ∆Φ(Γ → A) respectively:

Φ(Γ → A) = ΦΓ → ΦA ∆Φ(Γ → A) = □ΦΓ → ∆ΦΓ → ∆ΦA

To get the hang of these context and type transformations, suppose x :: A, Y : B ⊢ e : C. Then
theorem 21 tells us:

x :: ΦA, dx :: ∆ΦA, Y : ΦB ⊢ ϕe : ΦC

x :: ΦA, dx :: ∆ΦA, y :: ΦB,DY : ∆ΦB ⊢ δe : ∆ΦC

Along with the original program’s variables, ϕe requires zero change variables dx for every
discrete source variable x. Meanwhile, δe requires changes for every source program variable
(for discrete variables these will be zero changes), and moreover is discrete with respect to
the source program variables (the “base points”).

We now have enough information to tackle the definitions of ϕ and δ given in figure 3.2.
In the remainder of this section, we’ll examine the most interesting and important parts of
these definitions in detail.

⁹ For notational convenience we assume that source programs contain no variables starting with the letter d.
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3.4.2 Fixed points

The whole purpose of ϕ and δ is to speed up fixed points, so let’s start there. In a fixed point
expression fix e, we know e : □(

fix
L→

fix
L). Consequently the type of ϕe is

Φ(□(
fix
L→

fix
L)) = □(Φ(

fix
L→

fix
L)× ∆Φ(

fix
L→

fix
L))

= □((Φ
fix
L→ Φ

fix
L)× (□Φ

fix
L→ ∆Φ

fix
L→ ∆Φ

fix
L))

= □((
fix
L→

fix
L)× (□

fix
L→ ∆

fix
L→ ∆

fix
L) by lemma 19, Φ

fix
L =

fix
L

= □((
fix
L→

fix
L)× (□

fix
L→

fix
L→

fix
L) by lemma 20, ∆

fix
L =

fix
L

The behavior of ϕe is to compute a boxed pair [(f, f ′)], where f :
fix
L→

fix
L is a sped-up function

and f ′ : □
fix
L→

fix
L→

fix
L is its derivative. This is exactly what we need in order to call semifix.

Therefore ϕ(fix e) = semifix ϕe. However, if we’re going to use semifix in the output of ϕ,
we ought to give it a typing rule and semantics:

Γ ⊢ e : □((
fix
L→

fix
L)× (□

fix
L→

fix
L→

fix
L)

Γ ⊢ semifix e :
fix
L

Jsemifix eK γ = semifix (f, f ′)

where (f, f ′) = JeK γ

As for δ(fix e), since e can’t change (having □ type), neither can fix e (or semifix ϕe). All we
need is a zero change at type

fix
L; by lemma 20, ⊥ suffices.

3.4.3 Variables, λ-abstraction, and application

At the core of a functional language are variables, λ-abstraction, and application. The ϕ

translation leaves these alone, simply distributing over subexpressions. On variables, δ yields
the corresponding change variables. On functions and application, δ is more interesting:

∆Φ(A→ B) = □ΦA→ ∆ΦA→ ∆ΦB

δ(λX. e) = λ[x]. λDX. δe

δ(e f) = δe [ϕf] δf

The intuition behind δ(λX. e) = λ[x]. λDX. δe is that a function change takes two arguments,
a base point x and a change DX, and yields the change in the result of the function, δe.
However, we are given an argument of type □ΦA, but consulting theorem 21 for the type of
δe, we need a discrete variable x :: ΦA, so we use pattern-matching to unbox our argument.
The intuition behind δ(e f) = δe [ϕf] δf is much the same: δe needs two arguments, the
original input ϕf and its change δf, to return the change in the function’s output. Moreover,
it’s discrete in its first argument, so we need to box it, [ϕf].

One might ask why this type-checks, since ϕe and δe don’t use the same typing context.
We’re even boxing ϕf, hiding all monotone variables; consequently, it gets the context
⌈□ΦΓ,∆ΦΓ⌉. However, □ makes every variable discrete, and ⌈−⌉ leaves discrete variables
alone, so this provides at least □ΦΓ , while the context ϕf needs is ΦΓ . Thus really this is a
question about the interaction of weakening and discreteness: can a discrete variable always
substitute for a monotone one?

Indeed it may: making a variable discrete only increases the number of places it can
be used, because while some typing rules discard monotone variables, they never discard
discrete ones. We formalize this using a weakening relation Γ ⊑ ∆ (figure 3.4; note that H
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empty

ε ⊑ ε

cons
Γ ⊑ ∆

Γ,H ⊑ ∆,H

drop
Γ ⊑ ∆

Γ ⊑ ∆,H

disc
Γ ⊑ ∆

Γ, X : A ⊑ ∆, x :: A

figure 3.4 Weakening relation

for “hypothesis” ranges over all variable typings, monotone or discrete), which is standard
except for the rule disc, which says that a discrete hypothesis is weaker than a monotone
one. We can then show that typing respects weakening:

Theorem 22 (Weakening). If ∆ ⊒ Γ and Γ ⊢ e : A then ∆ ⊢ e : A.

Proof. By induction on the derivation of Γ ⊢ e : A; see appendix A.2.

We use this without further note throughout the ϕ and δ transformations.

3.4.4 The discreteness comonad, □

Our strategy hinges on decorating expressions of type □A with their zero changes, so the
translations of [e] and (let [x] = e in f) are of particular interest. The most trivial of these is
δ[e] = (); this follows from ∆Φ□A = 1, since boxed values cannot change.

Next, consider ϕ[e] = [(ϕe, δe)]. The intuition here is straightforward: ϕ needs to
decorate e with its zero change; since e is discrete and cannot change, we use δe. However!
In general, one cannot use δ inside the ϕ translation and expect the result to be well-typed;
ϕ and δ require different typing contexts. To see this, let’s apply theorem 21 to singleton
contexts:

Γ (context of e) ΦΓ (context ofϕe) □ΦΓ,∆ΦΓ (context of δe)

X : A X : ΦA x :: ΦA,DX : ∆ΦA

x :: A x :: ΦA,dx :: ∆ΦA x :: ΦA,dx :: ∆ΦA

Luckily, although ΦΓ and □ΦΓ,∆ΦΓ differ on monotone variables, they agree on discrete
ones. And since e is discrete, it has no free monotone variables, justifying the use of δe in
ϕ[e] = [(ϕe, δe)].

Next we come to (let [x] = e in f), whose ϕ and δ translations are very similar:

ϕ(let [x] = e in f) = let [(x, dx)] = ϕe in ϕf

δ(let [x] = e in f) = let [(x, dx)] = ϕe in δf

Since x is a discrete variable, both ϕf and δf need access to its zero change dx. Luckily,
ϕe : □(ΦA× ∆ΦA) provides it, so we simply unpack it. We don’t use δe in δf, but this is
unsurprising when you consider that its type is ∆Φ□A = 1.
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dummy{
eq
A} = {} dummyA×B (x, y) = (dummy x, dummy y)

dummy1 () = () dummyA+B (ini x) = ini (dummy x)

dummy□A [x] = [dummy x] dummyA→B f = λx. dummy (f x)

figure 3.5 The function dummyA : A→ ∆A

3.4.5 Case analysis, split, and dummy

The derivative of case-analysis, δ(case e of (ini Xi � fi)i), is complex. Suppose ϕe evaluates
to ini x and its change δe evaluates to inj dx. Recall that sums are ordered disjointly (§2.3.2);
the value x can increase, but the tag ini must remain the same. Since δe is a change to ϕe, the
change structure on sums (§3.3.2) tells us that i = j! So the desired change δ(case e of . . .)
is given by δfi in a context supplying a discrete base point x (the value x) and the change
DX. To bind x discretely, we need to use [ϕe] : □(ΦA+ΦB); to pattern-match on this, we
need split to distribute the □.

This handles the first two cases, (ini [x], ini DX � δfi)i. Since we know the tags on ϕe

and δe agree, these are the only possible cases. However, since the output of our translation is
Datafun code, to appease the type-checker we must handle the impossible case that i ̸= j. This
case is dead code: it needs to typecheck, but is otherwise irrelevant. It suffices to generate a
dummy change dx : ∆ΦAi from our base point x :: ΦAi. We do this using a simple function
dummyA : A→ ∆A (figure 3.5).

We also need dummy in the definition of ϕ(split e). In effect split has type □(A+ B)→
□A+□B. Observe that

Φ(□(A+ B)) = □((ΦA+ΦB)× (∆ΦA+ ∆ΦB))

Φ(□A+□B) = □(ΦA× ∆ΦA) +□(ΦB× ∆ΦB)

So while ϕe yields a boxed pair of tagged values, [(ini x, inj dx)], we need ϕ(split e) to yield
a tagged boxed pair, ini [(x, dx)]. Again we use dummy to handle the impossible case i ̸= j.

Finally, observe that δ(split e) has type ∆Φ(□A+□B) = ∆Φ□A+ ∆Φ□B = 1+ 1. All
it must do is return (ini ()) with a tag that matches ϕ(split e) and ϕe; case-analysing ϕe

suffices.

3.4.6 Semilattices and comprehensions

The translation ϕ(e ∨ f) = ϕe ∨ ϕf is straightforward, but δ(e ∨ f) = δe ∨ δf is not as
simple as it seems. Restricting to sets, suppose that dx changes x into x ′ and dy changes
y to y ′. In particular, suppose these changes are precise: that dx = x ′ \ x and dy = y ′ \ y.
Then the precise change from x ∪ y into x ′ ∪ y ′ is:

(x ′ ∪ y ′) \ (x ∪ y) = (x ′ \ x \ y) ∪ (y ′ \ y \ x) = (dx \ y) ∪ (dy \ x)

This suggests letting δ(e ∪ f) = (δe \ ϕf) ∪ (δf \ ϕe). This is a valid derivative, but it
involves recomputing ϕe and ϕf, and our goal is to avoid recomputation. So instead, we
overapproximate the derivative: δe ∪ δf might contain some unnecessary elements, but we
expect it to be cheaper to include these than to recomputeϕe andϕf. This overapproximation
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agrees with seminaïve evaluation in Datalog: Datalog implicitly unions the results of different
rules for the same predicate (e.g. those for path in §3.1), and the seminaïve translations of
these rules do not include negated premises to compute a more precise difference.

Now let’s consider for (x ∈ e) f. Its ϕ-translation is straightforward, with one hitch:
because x ::

eq
A is a discrete variable, the inner loop ϕf needs access to its zero change

dx :: ∆
eq
A. Conveniently, at eqtypes (although not in general), the dummy function computes

zero changes:

Lemma 23. If x :
eq
A then dummy x ▷ x ↪→ x :

eq
A.

Proof. By induction on
eq
A, unfolding the definition of (dummy dx ▷ x ↪→ x :

eq
A) from §3.2 at

each step. For example, when
eq
A = {

eq
B}, we need to show that x ∪ dummy dx = x, which is

true because dummy{
eq
B} x = {}.

For clarity, we write 0 rather than dummy when we use it to produce zero changes; we only
call it dummy in dead code.

Finally, we come to δ(for (x ∈ e) f), the computational heart of the seminaïve transfor-
mation, as for is what enables embedding relational algebra (the right-hand-sides of Datalog
clauses) into Datafun. Here there are two things to consider, corresponding to the two
for-clauses generated by δ(for (x ∈ e) f). First, if the set ϕe we’re looping over gains new
elements x ∈ δe, we need to compute ϕf over these new elements. Second, if the inner
loop ϕf changes, we need to add in its changes δf for every element, new or old, in the
looped-over set, ϕe ∨ δe. Just as in the ϕ-translation, we use 0/dummy to calculate zero
changes to set elements.

3.4.7 Leftovers

The ϕ rules we haven’t yet discussed simply distribute ϕ over subexpressions. The remaining
δ rules mostly do the same, with a few exceptions. In the case of δ({ei}i) = δ(e = f) = ⊥,
the sub-expressions are discrete and cannot change, so we produce a zero change ⊥. This is
also the case for δ(empty? e) = empty? ϕe, but as with δ(split e), the zero change here is at
type 1+ 1, so to get the tag right we must analyse ϕe.

3.5 Proving the seminaïve transformation correct
We have given two program transformations: ϕe, which optimizes e by computing fixed
points seminaïvely; and δe, which finds the change in ϕe under a change in its free variables.
To state the correctness of ϕ and δ, we need to show that ϕe preserves the meaning of e
and that δe correctly updates ϕe with respect to changes in its variable bindings. Since our
transformations modify the types of higher-order expressions to include the extra information
needed for seminaïve evaluation, we cannot directly prove that the semantics is preserved.
Instead, we formalize the relationship between e, ϕe, and δe using a logical relation, and
use this relation to prove an adequacy theorem saying that the semantics is preserved for
closed, first-order programs.

So, inductively on types A, letting a, b ∈ JAK, x, y ∈ JΦAK, and dx ∈ J∆ΦAK, we define
a five place relation dx ▷A x  a � y  b, meaning roughly “x, y speed up a, b respectively,
and dx changes x into y”. The full definition is in figure 3.6.
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() ▷1 ()  () � ()  () ⇐⇒ ⊤
d⃗x ▷A1×A2

x⃗  a⃗ � y⃗  b⃗ ⇐⇒ (∀i) dxi ▷Ai
xi  ai � yi  bi

ini dx ▷A1+A2
inj x  ink a � inl y  inm b ⇐⇒ i = j = k = l = m ∧ dx ▷Ai

x  a � y  b

df ▷A→B f  f ′ � g  g ′ ⇐⇒ (∀dx ▷A x  a � y  b)

df x dx ▷B f x  f ′ a � g y  g ′ b

dx ▷{
eq
A} x  a � y  b ⇐⇒ (x, y, x ∪ dx) = (a, b, y)

() ▷□A (x, dx)  a � (y, dy)  b ⇐⇒ (a, x, dx) = (b, y, dy) ∧ dx ▷A x  a � y  b

figure 3.6 Definition of the logical relation

At product, sum, and function types this is essentially a more elaborate version of the
change structures given in §3.2. At set types, changes are still a set of values added to the
initial value, but we additionally insist that the “slow” a, b and “speedy” x, y are equal. This
is because we have engineered the definitions of Φ and ϕ to preserve behavior on equality
types. Finally, since □A represents values which cannot change, dx is an uninformative
empty tuple and the original and updated values are identical. However, the “speedy” values
are now pairs of a value and its zero change. This ensures that at a boxed function type, we
will always have a derivative (a zero change) available.

The logical relation is defined on simple values, and so before we can state the fundamental
theorem, we have to extend it to contexts Γ and substitutions, letting ρ, ρ ′ ∈ JΓK, γ, γ ′ ∈ JΦΓK,
and dγ ∈ J∆ΦΓK:

dγ ▷Γ γ  ρ � γ ′  ρ ′ ⇐⇒ (∀X : A ∈ Γ) dγDX ▷A γX  ρX � γ ′
X  ρ ′

X

∧ (∀x :: A ∈ Γ) () ▷□A (γx, γdx)  ρx � (γ ′
x, γ

′
dx)  ρ ′

x

With that in place, we can state the fundamental theorem, showing that ϕ and δ generate
expressions which satisfy this logical relation:

Theorem 24 (Fundamental property). If Γ ⊢ e : A and dγ ▷Γ γ  ρ � γ ′  ρ ′ then

JδeK (γ, dγ) ▷A JϕeK γ  JeK ρ � JϕeK γ ′  JeK ρ ′

Proof. See appendix A.2.

This theorem follows by a structural induction on typing derivations as usual, but requires a
number of lemmas. By and large, these lemmas generalize or build on results stated earlier
regarding the simpler change structures from §3.2. For example, we build on lemmas 19
and 23 to characterize the logical relation at equality types

eq
A and the behavior of dummy:

Lemma 25 (Equality changes). If dx ▷
eq
A x  a � y  b then x = a and y = b.

Lemma 26 (Dummy is zero at eqtypes). If x ∈ J
eq
AK then dummy x ▷

eq
A x  x � x  x.

Proof. In each case, induct on
eq
A. See appendix A.2.
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Lemma 25 tells us that at equality types, the sped-up version of a value is the value itself. This
is used later to prove our adequacy theorem. Lemma 26 is an analogue of lemma 23, showing
that dummy function computes zero changes at equality types. This is used in the proof of
the fundamental theorem for for-loops, in whose ϕ and δ translations 0 is implemented by
dummy.

Next, we generalize lemma 20 to characterize changes at semilattice type:

Lemma 27 (Semilattice changes). At any semilattice type L, we have ∆L = L, and moreover
dx ▷L x  a � y  b iff x = a and y = b = x ∨L dx

Proof. By induction on semilattice types L, applying lemma 25 (noting that every semilattice
type is an equality type).

We require this lemma in the proofs of the fundamental theorem in all the cases involving
semilattice types – namely ⊥, ∨, for, and fix.

Since typing rules that involve discreteness (such as the □ rules) manipulate the context,
we need some lemmas regarding these manipulations. First, we show that all valid changes
for a context with only discrete variables send substitutions to themselves, recalling that ⌈Γ⌉
contains only the discrete variables from Γ .

Lemma 28 (Discrete contexts don’t change). If () ▷⌈Γ⌉ γ  ρ � γ ′  ρ ′ then γ = γ ′ and
ρ = ρ ′.

Proof. All variables in the stripped contexts are discrete, and therefore the logical relation
for discrete variables in contexts, which invokes the logical relation at □ type, requires their
corresponding components be equal.

We use this lemma in combination with the next, which says that any valid context change
gives rise to a valid change on a stripped context:

Lemma 29 (Context stripping). If dγ ▷Γ γ  ρ � γ ′  ρ ′ then

() ▷⌈Γ⌉ stripΦΓ (γ)  stripΓ (ρ) � stripΦΓ (γ
′)  stripΓ (ρ

′)

where stripΓ = ⟨πx⟩x::A∈Γ keeps only the discrete variables from a substitution.

Proof. Immediate from the definitions.

Jointly, these two lemmas ensure that a valid change to any context is an identity on the
discrete part. We use these in all the cases of the fundamental theorem involving discrete ex-
pressions – equality e1 = e2, set literals {ei}i, emptiness tests empty? e, and box introduction
[e].

Combining all these lemmas to establish the fundamental theorem, adequacy follows
immediately:

Theorem 30 (Adequacy). If ε ⊢ e :
eq
A then JeK = JϕeK.

Proof. By theorem 24, noting the premise is trivial since the context is empty, we have
JδeK ▷

eq
A JϕeK  JeK � JϕeK  JeK, which by lemma 25 implies JϕeK = JeK.
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Chapter 4

Implementation and Efficiency

The previous chapter was entirely theoretical, formalizing the intuition that seminaïve eval-
uation works by computing the changes between iterations toward a fixed point by, first,
constructing a theory of changes for Datafun; and second, applying that theory to construct
and prove correct a program transformation which implements this strategy. However, the
purpose of seminaïve evaluation is not to push changes around, but to compute results faster.
We have proven that our transformed program computes the same result, but not shown
that it does so more efficiently. In this chapter we remedy this experimentally, observing
that at least two further optimizations are necessary to achieve asymptotic performance
improvements.

First, in §4.1 we apply the seminaïve program transformation by hand to our running
example, transitive closure. In the process we uncover some obvious inefficiencies in the
transformed code and demonstrate how to optimize them away. In §4.2 we discuss our imple-
mentation of a Datafun-to-Haskell compiler, which we use to demonstrate experimentally that
seminaïve evaluation can produce asymptotic performance improvements when combined
with these optimizations.

Second, in §4.3 we observe that even with these optimizations, there remain cases
where we do asymptotically more work than necessary, not because of inefficiencies in the
transformed program, but because of the imprecision of our derivatives. This results in overly
large changes which accumulate across fixed point iterations. We implement a simple solution
based on change minimization and test it experimentally.

4.1 Applying the seminaïve transformation to transitive closure
Let’s try applying the seminaïve transform to a simple Datafun program: the transitive closure
function trans from §2.2.1:

trans [edge] = fix R is edge ∪ (edge • R)
S • T = for ((x, y1) ∈ S) for ((y2, z) ∈ T) for (y1 = y2) {(x, z)}

In the process we’ll discover that besides ϕ itself we need a few simple optimisations to
actually speed up our program: most importantly, we need to propagate ⊥ expressions.

In our experience, performing ϕ and δ by hand is easiest done from the inside outwards.
At the core of transitive closure is a relation composition, (e • p), and at the core of relation
composition is a “one-sided conditional”, for (y1 = y2) {(x, z)}. Let’s take a look at its ϕ and
δ translations:
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ϕ(for (y1 = y2) {(x, z)})

= ϕ(for (() ∈ y1 = y2) {(x, z)}) desugar
= for (() ∈ y1 = y2) ϕ{(x, z)} apply ϕ and omit unused let
= for (y1 = y2) {(x, z)} resugar

Frequently, as in this case, ϕ does nothing interesting. For brevity we’ll skip such no-op
translations. Now for the δ translation:

δ(for (y1 = y2) {(x, z)})

= δ(for (() ∈ y1 = y2) {(x, z)}) desugar
= for (() ∈ δ(y1 = y2)) ϕ{(x, z)}

apply δ and omit unused lets∪ for (() ∈ ϕ(y1 = y2) ∪ δ(y1 = y2)) δ{(x, z)}

= for (() ∈ ⊥) {(x, z)}
apply ϕ/δ to y1 = y2 and {(x, z)}∪ for (() ∈ ϕ(y1 = y2) ∪ ⊥) ⊥

= ⊥ propagate ⊥

Thus:

δ(for (y1 = y2) {(x, z)}) = ⊥ (4.1)

The core insight here is that neither y1 = y2 nor {(x, z)} can change. Propagating this
information – for example, rewriting (for (...) ⊥) to ⊥ – can simplify derivatives and
eliminate expensive for-loops.

Now let’s pull out and examine for ((y2, z) ∈ t) for (y1 = y2) {(x, z)}. The ϕ translation
is again a no-op, and the δ translation is:

δ(for ((y2, z) ∈ t) for (y1 = y2) {(x, z)})

= for ((y2, z) ∈ dt) ϕ(for (y1 = y2) {(x, z)}) apply δ and omit unused lets
∪ for ((y2, z) ∈ t ∪ dt) δ(for (y1 = y2) {(x, z)})

= for ((y2, z) ∈ dt) for (y1 = y2) {(x, z)} use equation 4.1, propagate ⊥

Thus:

δ(for ((y2, z) ∈ t) for (y1 = y2) {(x, z)}) = for ((y2, z) ∈ dt) for (y1 = y2) {(x, z)} (4.2)

Tackling the outermost for loop:

δ(for ((x, y1) ∈ s) for ((y2, z) ∈ t) for (y1 = y2) {(x, z)})

= for ((x, y1) ∈ ds) ϕ(for ((y2, z) ∈ t) for (y1 = y2) {(x, z)}) apply δ(for . . . )
∪ for ((x, y1) ∈ s ∪ ds) δ(for ((y2, z) ∈ t) for (y1 = y2) {(x, z)})

= for ((x, y1) ∈ ds) for ((y2, z) ∈ t) for (y1 = y2) {(x, z)} use equation 4.2
∪ for ((x, y1) ∈ s ∪ ds) for ((y2, z) ∈ dt) for (y1 = y2) {(x, z)}

= (ds • t) ∪ ((s ∪ ds) • dt) rewrite using •

This, then, is the derivative of relation composition:
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δ(s • t) = (ds • t) ∪ ((s ∪ ds) • dt) (4.3)

Distributing composition over union, this is equivalent to (ds • t) ∪ (s • dt) ∪ (ds • dt),
which is perhaps the derivative a human would give.

Let’s use this to figure out ϕ(trans [e]). Working inside out, we start with the derivative
of the loop body, δ(e ∪ (e • p)):

δ(e ∪ (e • p))
= δe ∪ δ(e • p)
= δe ∪ (δe • p) ∪ ((e ∪ δe) • dp) use equation 4.3
= ⊥ ∪ (⊥ • p) ∪ ((e ∪ ⊥) • dp) δe is a zero change; replace with ⊥
= e • dp propagate ⊥

Note that the penultimate step here requires a new optimization: by definition δe = de, but
since e is discrete we know de is a zero change, so we may safely replace it by ⊥, as it will
have the same effect. Thus:

δ(e ∪ (e • p)) = e • dp (4.4)

Putting everything together, we have:

ϕ(fix P is e ∪ (e • p)
= ϕ(fix [λp. e ∪ (e • p)]) desugaring
= semifix ϕ[λp. e ∪ (e • p)]
= semifix

[
(ϕ(λp. e ∪ (e • p)), δ(λp. e ∪ (e • p)))

]
= semifix

[
((λp. e ∪ (e • p)), (λ[p]. λdp. e • dp))

]
use equation 4.4

Examining the recurrence produced by this use of semifix, we recover the seminaïve transitive
closure algorithm from §3.1:

x0 = ⊥ xi+1 = xi ∪ dxi

dx0 = (λp. e ∪ (e • p)) ⊥ = e dxi+1 = (λ[p]. λdx. e • dp) [xi] dxi = e • dxi

4.2 Implementation
To put the seminaïve transformation presented in chapter 3 to the test, we have implemented
it as part of a compiler and runtime for a fragment of Datafun (omitting sum types and pattern-
matching), available at https://github.com/rntz/datafun/tree/popl20/v4-fastfix.
In §4.2.1 we sketch the compiler’s front-to-back structure, from Datafun source code through
several intermediate stages to Haskell output. In §4.2.2 we explore how an example Datafun
program gets compiled, exhibit the small auxiliary library necessary to run the compiled
outputs, and explain why we chose Haskell as a target language. Finally, in §4.2.3 we perform
some simple benchmarks to test for the expected efficiency gains.
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propagate⊥

figure 4.1 Stages of the Datafun compiler

4.2.1 The compiler structure

The compiler proceeds in several passes, shown as arrows in figure 4.1. It begins with fairly
standard parsing and typechecking phases. For parsing, we use OCaml’s Menhir library.1 The
typechecker is bidirectional (Pierce and Turner, 2000) rather than performing full inference,
for simplicity of implementation. After these, we have a choice of paths.

The simplest approach is to translate Datafun fairly directly into Haskell. Many of Datafun’s
features have direct parallels in Haskell, including sum, product, and function types; Datafun’s
sets are implemented using Haskell’s Data.Set module; Datafun’s semilattice types are
implemented as a Haskell typeclass; and Datafun’s fixed points can be implemented by naïve
bottom-up iteration. (We discuss these implementation details in §4.2.2.)

One feature of Datafun that does not translate straightforwardly into Haskell is the
discreteness comonad□. However, its only purpose is to track (non-)monotonicity; at runtime,
□A may as well be A. Thus before emitting Haskell we “drop boxes”, eliminating □ and its
related term syntax by rewriting [e]⇝ e and let [x] = e in f⇝ let x = e in f and dropping
the distinction between discrete and monotone variables. This takes us to an intermediate
language, unimaginatively dubbed “IL”, supporting Datafun’s computational features but
lacking its modal typing, which we translate directly into Haskell.

Thus naïve compilation of Datafun code takes a straight path through figure 4.1:

Source Syntax Typed syntax IL Haskell
parse typecheck drop boxes emit

For seminaïve evaluation, however, we must apply the ϕ transform from chapter 3 to the

1 http://gallium.inria.fr/~fpottier/menhir/
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typed syntax before dropping boxes, since the transform works precisely by annotating
boxed terms with their zero-changes. As we have no further use for □, the compiler pass
implementing ϕ omits boxes from its output. Thus after applying the ϕ transform we can
directly emit Haskell.

As we saw in §4.1, however, the ϕ transform produces code that can often be simplified
by replacing certain expressions by ⊥. Therefore we implement two optimization passes:

1. We propagate ⊥ by applying the following rewrites to the IL:

e ∨ ⊥⇝ e ⊥ ∨ e⇝ e

for (x ∈ e) ⊥⇝ ⊥ for (x ∈ ⊥) e⇝ ⊥
let x = ⊥ in e⇝ e {x 7→ ⊥} let x = e in ⊥⇝ ⊥

(⊥,⊥)⇝ ⊥ πi ⊥⇝ ⊥

The most important rewrite here is for (x ∈ e) ⊥⇝ ⊥: to evaluate the left hand side
directly, we evaluate e and iterate over the resulting set, which takes work proportional
to its size; but evaluating the right hand side takes constant work. This is where the
asymptotic speedups originate. The other rewrites are useful primarily because they
enable this one.

2. To make ⊥-propagation more effective, we first insert ⊥ in place of semilattice-valued
zero changes. To this end, the ϕ transform pass explicitly marks certain terms produced
by δ which are guaranteed to be zero-changes, namely:

δx = dx (for discrete x)
δ[e] = ()

δ{ei}i = δ(e1 = e2) = δ(fix e) = δ⊥ = ⊥

The insert⊥ pass replaces these marked expressions with⊥ when they have semilattice
type, along with some compound terms guaranteed to produce zero-changes:

let x = e in f when f is a zero change
x when x is let-bound to a zero change
e1 e2 e3 when e1, e3 are both zero changes

In case it is not clear, the last case corresponds to the derivative of function application,
δ(e f) = δe [ϕf] δf, when neither the function nor the argument are changing.

To test whether insert⊥ is actually useful, we also implement a do nothing pass for comparison,
which simply ignores the zero-change annotations produced by the ϕ transform. Altogether,
we have three new paths through the compiler. First, after parsing and typechecking we we
can apply the seminaïve transform without further optimizations:

Typed syntax IL with zero IL Haskell
ϕ transform do nothing emit
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Second, we can optimize the output of the ϕ transform by propagating ⊥:

Typed syntax IL with zero IL IL Haskell
ϕ transform do nothing propagate⊥ emit

Or finally, we can replace semilattice zero changes with ⊥ to make ⊥ propagation more
effective:

Typed syntax IL with zero IL IL Haskell
ϕ transform insert⊥ propagate⊥ emit

4.2.2 Compiling transitive closure

To understand the compiler’s behavior more concretely, let’s consider what it does to a
Datafun program implementing transitive closure:

trans : □{
eq
A×

eq
A}→ {

eq
A×

eq
A}

trans [edge] = fix P is edge ∨ {(x, z) | (x, y) ∈ edge, (!y, z) ∈ P}

This code needs a few changes for the compiler to accept it. First, we must replace
eq
A with a

specific, concrete type, as the compiler does not support polymorphism. Second, the compiler
does not support pattern-matching, so we must replace box-patterns with let-unboxing,
tuple-patterns with projections, and equality patterns !y with equality tests:

trans : □{string× string}→ {string× string}
trans = λE.

let [edge] = E in
fix P is

edge ∨ {(π1 a, π2 b) | a ∈ edge, b ∈ P, π2 a = π1 b}

In the ASCII syntax the compiler accepts, this becomes:

@([{str,str}] -> {str,str}) -- type annotation

\e.

let [edge] = e in
fix p is
edge or {(pi1 a, pi2 b) for a in edge for b in p when pi2 a = pi1 b}

Passing this through the naïve compilation path, parse → typecheck → drop boxes → emit,
produces closely corresponding Haskell code (also shown in figure 4.4):

\e_0 ->

let edge_1 = e_0 in
fix (\p_2 ->

union edge_1

(forIn edge_1 (\a_3 ->

forIn p_2 (\b_4 ->

guard (snd a_3 == fst b_4)

(set [(fst a_3, snd b_4)])))))

This code has been prettified by removing unnecessary parentheses and adding line breaks
and indentation. Besides minor syntactic details, the primary changes are:
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1. Variable names have had unique numeric suffixes added; this is an artifact of the
compiler internals.

2. Boxes have been dropped, so let [edge] = e becomes simply let edge_1 = e_0.

3. The set comprehension is translated into nested calls to forIn, guard, and set. This
uglifies the code, replacing binding forms with higher-order functions applied to lamb-
das, but otherwise corresponds to desugaring the comprehension (figure 2.2):

{(π1 a, π2 b) | a ∈ edge, b ∈ P, π2 a = π1 b}

desugar−−−→ for (a ∈ edge) for (b ∈ P) for ( ∈ π2 a = π1 b) {(π1 a, π2 b)}

4. In a similar way, other Datafun features such as fixed points fix X is e and semilattice
join e1 ∨ e2 have been translated into calls to functions like fix and union.

The resulting Haskell code depends on functions (highlighted in pink) supplied by a small
auxiliary library (figure 4.2). The primary reason we chose Haskell as a target language is
because it simplifies this step of translating language features into calls to library functions:
Datafun’s concept of a “semilattice type” L, over which ∨, ⊥, fix, and for-loops are parame-
terized, translates directly to a Haskell typeclass Semilat defined in this auxiliary library.
This spares the Datafun compiler the work of determining at which types these primitives
are actually invoked and generating the library code necessary for that subset of types.

This Semilat typeclass has two core methods, (<:) and unions:2

class Semilat a where
(<:) :: a -> a -> Bool

unions :: [a] -> a

... etc ...

The (<:) operator computes the type’s order relation ⩽,3 and is used to determine when
fixed point iteration has stabilized: seminaïve iteration stabilizes once dxi ⩽ xi. (This is an
optimization over checking equality xi = xi+1.) The unionsmethod computes the semilattice
join/least upper bound of its list of arguments. Using this we define binary union/∨ and
nullary empty/⊥ wrappers. We provide instances for empty and binary products, booleans,
and sets, the Haskell types which our Datafun semilattice types get translated into.

The other functions provided by the runtime library are set, used to construct literal
sets; forIn, which implements for-loops over sets; guard, which implements for-loops over
booleans (i.e. one-sided conditionals for (e1) e2, also seen as boolean “guard” conditions
in set comprehensions); and fix/semifix, which implement naïve and seminaïve iteration
respectively.2

4.2.3 Benchmarking seminaïve evaluation

To test whether the ϕ translation can produce the asymptotic performance gains we claim,
we benchmark two example Datafun programs:

2 The diff method on Semilat and the semifixMinimized function that uses it will be explained in §4.3.
3 We did not use Haskell’s built-in Ord typeclass for this because it is intended for total orders, not partial ones.
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module Runtime (Set, Semilat (..), set, guard, forIn,

fix, semifix, semifixMinimized) where
import qualified Data.Set as Set

import Data.Set (Set)

class Semilat a where
(<:) :: a -> a -> Bool

unions :: [a] -> a

empty :: a

empty = unions []

union :: a -> a -> a

union x y = unions [x,y]

diff :: a -> a -> a -- Law: union a (diff da a) = union a da

diff dx x = dx -- always lawful but not always efficient

instance Semilat () where
() <: () = True

unions _ = ()

instance (Semilat a, Semilat b) => Semilat (a,b) where
(a,x) <: (b,y) = a <: b && x <: y

unions ts = (unions lefts, unions rights) where (lefts, rights) = unzip ts

diff (da,db) (a,b) = (diff da a, diff db b)

instance Semilat Bool where
x <: y = not x || y

unions = or

instance Ord a => Semilat (Set a) where
(<:) = Set.isSubsetOf

unions = Set.unions

diff = Set.difference

set :: Ord a => [a] -> Set a

set = Set.fromList

guard :: Semilat a => Bool -> a -> a

guard c x = if c then x else empty

forIn :: Semilat b => Set a -> (a -> b) -> b

forIn set f = unions [f x | x <- Set.toList set]

fix :: Semilat a => (a -> a) -> a

fix f = loop empty

where loop x = if x' <: x then x else loop x'

where x' = f x

semifix, semifixMinimized :: Semilat a => ((a -> a), (a -> a -> a)) -> a

semifix (f, df) = loop empty (f empty)

where loop x dx = if dx <: x then x else loop (union x dx) (df x dx)

semifixMinimized (f, df) = loop empty (f empty)

where loop x dx = if dx <: x then x else
let x' = union x dx in loop x' (df x dx `diff` x')

figure 4.2 Datafun’s runtime library
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1. Finding the transitive closure of a linear graph using the trans function from §4.2.2 (first
introduced in §2.2.1). As discussed in §3.1, transitive closure has a well understood
asymptotic speed-up under seminaïve evaluation. This means that if we’ve failed to
capture the essence of seminaïve evaluation, it should be highly visible.

2. Finding all matches of the regular expression /a*/ in the string an, using the regex
combinators from §2.2.2. Finding all matches for /a*/ amounts to finding the reflexive,
transitive closure of the matches of /a/, and on an these form a linear graph. Thus this is
a close analogue of our first example, but written in a higher-order style, as we represent
regular expressions as functions and regex constructors as function combinators. We
chose this example to test whether our extension of seminaïve evaluation properly
handles Datafun’s distinctive feature: higher-order programming.

We send each program through the four compiler paths described in §4.2.1: the direct/naïve
translation (naïve); the ϕ transform alone (seminaïve raw); ϕ with ⊥ propagation (seminaïve
simplified); and ϕ with ⊥ insertion and propagation (seminaïve optimized). We exhibit the
four translations of trans in figures 4.4–4.7. We graph the benchmark results in figure 4.3,
separately showing the running times as well as the speedup factor over naïve evaluation (on
a logarithmic plot). The results support two conclusions:

1. The ϕ transformation combined with optimizations enables asymptotic speedups:
seminaïve optimized is dramatically faster than naïve, and the speedup factor increases
with the input size.⁴ Moreover, the measured times are similar for transitive closure
and regex search across all optimization levels, suggesting that higher-order code does
not pose a particular problem for our optimizations.

2. These asymptotic improvements depend on ⊥ propagation: seminaïve raw yields only a
small constant-factor speedup over naïve, roughly 20%. However, the measured times
for seminaïve simplified and seminaïve optimized are effectively identical, so ⊥ insertion
appears to be irrelevant, even (somewhat surprisingly) in higher-order code.

As alluded to in the previous section, these asymptotic speedups come from avoiding wasteful
loops (for (x ∈ e1) e2) where e1 grows as our input grows but e2 always produces ⊥. The
ϕ/δ translations alone do not accomplish this: both ϕ(for (x ∈ e) ...) and δ(for (x ∈ e) ...)

produce loops that iterate over at least every x ∈ ϕe. Consulting our logical relation (fig-
ure 3.6) at set type, we see that e and ϕe compute identical sets, therefore the number of
iterations never shrinks. For instance, in the seminaïve raw translation of trans (figure 4.5)
the derivative passed to semifix contains the following wasteful loop:

forIn (union p_2 dp_2) (\b_4 ->

let db_4 = ((), ()) in
if (snd a_3 == fst b_4) then set [] else
guard False

(union (set [(fst a_3, snd b_4)]) (set [])))

⁴ Although faster than naïve evaluation, seminaïve optimized is still asymptotically quite slow in these benchmarks.
On transitive closure, for example, doubling the graph size from 160 to 320 nodes yields a slowdown factor
of .407

.054
≈ 7.54! However, since there are quadratically many paths and we find all of them, the best possible

runtime is O(n2). Moreover, our nested-loop relational joins are roughly a factor of n slower than optimal, so
we expect O(n3) behavior, which predicts a slowdown of 23 = 8, reasonably close to 7.54.
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regex search, naïve 1.665 2.940 4.924 7.872 12.251 18.789 27.828 48.393 69.337 96.371 131.300
transitive closure, naïve 1.568 2.843 4.797 7.756 11.944 18.521 29.415 47.446 67.845 95.142 128.403
regex search, seminaïve raw 1.317 2.410 4.047 6.568 9.909 14.840 21.636 39.629 57.017 80.622 109.707
transitive closure, seminaïve raw 1.275 2.351 4.040 6.429 9.880 14.656 22.886 39.007 56.686 79.837 109.552
regex search, seminaïve simplified 0.024 0.037 0.055 0.079 0.107 0.141 0.182 0.228 0.279 0.347 0.407
transitive closure, seminaïve simplified 0.022 0.035 0.054 0.077 0.103 0.138 0.187 0.220 0.271 0.333 0.395
regex search, seminaïve optimized 0.023 0.036 0.057 0.079 0.113 0.142 0.181 0.227 0.283 0.355 0.416
transitive closure, seminaïve optimized 0.022 0.035 0.054 0.081 0.102 0.137 0.174 0.216 0.272 0.336 0.407

figure 4.3 Naïve vs seminaïve evaluation of transitive closure and regex matching in Datafun
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\e_0 ->

let edge_1 = e_0 in
fix (\p_2 ->

union edge_1

(forIn edge_1 (\a_3 ->

forIn p_2 (\b_4 ->

guard (snd a_3 == fst b_4)

(set [(fst a_3, snd b_4)])))))

figure 4.4 Naïve translation of transitive closure

\e_0 ->

let (edge_1, dedge_1) = e_0 in
semifix

((\p_2 -> union edge_1

(forIn edge_1 (\a_3 ->

forIn p_2 (\b_4 ->

guard (snd a_3 == fst b_4)

(set [(fst a_3, snd b_4)]))))),

(\p_2 -> \dp_2 ->

union dedge_1

(union

(forIn dedge_1 (\a_3 ->

let da_3 = ((), ()) in
forIn p_2 (\b_4 ->

guard (snd a_3 == fst b_4)

(set [(fst a_3, snd b_4)]))))

(forIn (union edge_1 dedge_1) (\a_3 ->

let da_3 = ((), ()) in
union

(forIn dp_2 (\b_4 ->

let db_4 = ((), ()) in
guard (snd a_3 == fst b_4)

(set [(fst a_3, snd b_4)])))

(forIn (union p_2 dp_2) (\b_4 ->

let db_4 = ((), ()) in
if (snd a_3 == fst b_4) then set [] else
guard False

(union (set [(fst a_3, snd b_4)]) (set [])))))))))

figure 4.5 Raw seminaïve translation of transitive closure
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\e_0 ->

let (edge_1, dedge_1) = e_0 in
semifix

((\p_2 -> union edge_1

(forIn edge_1 (\a_3 ->

forIn p_2 (\b_4 ->

guard (snd a_3 == fst b_4)

(set [(fst a_3, snd b_4)]))))),

(\p_2 -> \dp_2 ->

union dedge_1

(union

(forIn dedge_1 (\a_3 ->

let da_3 = ((), ()) in
forIn p_2 (\b_4 ->

guard (snd a_3 == fst b_4)

(set [((fst a_3), (snd b_4))]))))

(forIn (union edge_1 dedge_1) (\a_3 ->

let da_3 = ((), ()) in
forIn dp_2 (\b_4 ->

let db_4 = ((), ()) in
guard (snd a_3 == fst b_4)

(set [(fst a_3, snd b_4)])))))))

figure 4.6 Seminaïve translation of transitive closure with ⊥ propagation

\e_0 ->

let (edge_1, dedge_1) = e_0 in
semifix

((\p_2 -> union edge_1

(forIn edge_1 (\a_3 ->

forIn p_2 (\b_4 ->

guard (snd a_3 == fst b_4)

(set [(fst a_3, snd b_4)]))))),

(\p_2 -> \dp_2 ->

forIn edge_1 (\a_3 ->

let da_3 = ((), ()) in
forIn dp_2 (\b_4 ->

let db_4 = ((), ()) in
guard (snd a_3 == fst b_4)

(set [(fst a_3, snd b_4)])))))

figure 4.7 Seminaïve translation of transitive closure with ⊥ insertion and propagation
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Each branch of the if-statement computes an empty set, the first branch explicitly and the
else-branch via (guard False ...). The ⊥ propagation pass recognizes this and rewrites
the entire loop to ⊥, removing it from the simplified and optimized translations (figures 4.6
and 4.7).

4.3 Change minimization
Before concluding that we have captured the essence of seminaive evaluation, let’s try a
small twist on our running example: let’s add self-loops to every node in our linear graph,
producing the graph (V, E) with V = {1, ..., n} and E = {(i, j) | j ∈ {i, i + 1}}. This makes
our reachability relation reflexive, changing the transitive closure from the less-than relation
{(i, j) | 1 ⩽ i < j ⩽ n} to the less-than-or-equal-to relation {(i, j) | 1 ⩽ i ⩽ j ⩽ n}. This
produces exactly n new paths, namely {(i, i) | 1 ⩽ i ⩽ n}; since we already had quadratically
many paths, ideally this won’t affect our performance much.

Unfortunately, adding these self-loops produces an asymptotic slowdown, even with our
seminaïve transformation and all optimizations applied (à la seminaïve optimized):
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What’s going on here? Recall from §4.1, page 67 (and confirmed by figure 4.7) that the
seminaïve iteration strategy Datafun uses for transitive closure is:

x0 = ∅ xi+1 = xi ∪ dxi

dx0 = edges dxi+1 = edges • dxi

The key computation step here is dxi+1 = edges • dxi. In other words, we prepend edges
out of each “frontier” dxi to get the next frontier dxi+1. Ideally, each frontier consists of pairs
(x, y) newly discovered to be reachable; by accumulating them into xi =

⋃
j<i dxj we find

all such pairs. In a linear graph without self-loops, as we saw in §3.1, this strategy discovers
each reachable pair exactly once, because dxi captures paths of length exactly i, and each
reachable pair corresponds to a unique path. But if our edge relation is reflexive, any path
from x to y can be adjoined to a self-loop to find a longer path from x to y; thus dxi ⊆ dxi+1.
In turn this means that dxi = xi+1; by adding self-loops we’ve regressed to naïve evaluation!

Taking a logical perspective, at step i, naïve evaluation finds all derivations of depth
d ⩽ i, while the “seminaïve” strategy we’ve presented so far finds only derivations of depth
d = i. This is a clear improvement, but sometimes the same fact may be derived at multiple
depths – as in our loopy linear graph, where derivation depth is path length. We care only
about whether a fact has a derivation, so anything after the first (shallowest) derivation is
redundant.
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From an incremental computation perspective, this is a problem of unnecessarily large
changes. Our seminaïve strategy looks for “new” ways to derive a tuple (x, y), based on
whatever was “newly” derived in the previous step. But our notion of “new” is a bit lax,
because our derivatives are allowed to be imprecise. Our strategy for finding a fixed point of
a function f : {

fin
A}→ {

fin
A} is:

x0 = ∅ xi+1 = xi ∪ dxi

dx0 = f ∅ dxi+1 = f ′ xi dxi

For sets, the derivative property guarantees that f xi ∪ f ′ xi dxi = f xi+1, but not
that f ′ xi dxi = f xi+1 \ f xi. This is exploited in, among others, the derivative rule
δ(e1 ∪ e2) = δe1 ∪ δe2. If δe1 and e2 intersect (or δe2 and e1 intersect), this generates an
overly large change.

A more precise derivative would be δ(e1 ∪ e2) = (δe1 \ e2) ∪ (δe2 \ e1). However, this
does more work, not less: it does not avoid computing “old” elements x ∈ e1 ∪ e2, but rather
discards them after-the-fact. Indeed, discovering something twice because it has two different
derivations seems in general unavoidable; in graph reachability, for instance, how can we
know two different paths lead to the same destination except by following them?

So if computing these overly large changes actually takes less work, where does the
asymptotic slowdown originate? It happens because rediscovering a reachable pair (x, y)
at iteration i causes redundant work in all subsequent iterations, because it is included in
dxi (treated as “new”) and used to compute dxi+1 = f ′ xi dxi. Consequently, dxi+1 will
include re-derivations of anything the presence of (x, y) makes “newly” deducible; and so on
in dxi+2, dxi+3, etc.

While we may not be able to avoid all rediscovery, we can avoid these unnecessary changes
accumulating across iterations – and the resulting asymptotic wastefulness – by minimizing
our changes. Let’s change our strategy for finding the “new” frontier dxi+1 to remove anything
that’s already in xi+1:

for transitive closure dxi+1 = (edges • dxi) \ xi+1

or more generally dxi+1 = (f ′ xi dxi) \ xi+1

This ensures each dxi is minimal, disjoint from xi and thus all prior dxj for j < i. (We don’t
need to do anything to minimize dx0 since x0 = ⊥.) This fixes our asymptotic slowdown:
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If we examine all four options – with and without self-loops, with and without minimizing dxi
– and compare their slowdown factors, taking a loopless graph without change minimization
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graph size vs seconds to evaluate
120 140 160 180 200 220 240 260 280

not minimizing, loopy 3.310 5.909 9.881 16.032 23.860 35.866 55.938 81.851 117.876
minimizing, loopy 0.048 0.079 0.113 0.162 0.213 0.288 0.359 0.449 0.562
minimizing, loopless 0.027 0.040 0.060 0.082 0.115 0.149 0.191 0.242 0.294
not minimizing, loopless 0.024 0.036 0.055 0.077 0.104 0.135 0.177 0.222 0.274

300 320 340 360 380 400

not minimizing, loopy 171.830 251.552 349.668 461.830 598.083 745.815
minimizing, loopy 0.684 0.816 0.959 1.153 1.367 1.545
minimizing, loopless 0.355 0.428 0.504 0.595 0.704 0.809
not minimizing, loopless 0.332 0.401 0.490 0.558 0.672 0.779

figure 4.8 The effect of self-loops and change minimization on seminaïve transitive closure
on a line graph
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as our baseline (figure 4.8), we find that (a) loopy graphs without change minimization are
asymptotically slow; (b) on loopless graphs, minimizing changes has low constant overhead
(versus not minimizing); and (c) moving from a loopless to a loopy graph causes a roughly 2x
slowdown when minimizing changes, because we must remove rediscovered paths on every
iteration.

Two questions remain: (1) why is change minimization correct? and (2) how can we
generalize it from finite sets to all semilattice types? As it happens, the answer to the first
question also illuminates the second. Change minimization is correct because it preserves
validity of changes: if dx ▷ x ↪→ y : {

eq
A}, in other words x ∪ dx = y, then we also have

dx \ x ▷ x ↪→ y : {
eq
A}, because x ∪ (dx \ x) = x ∪ dx = y. Thus minimizing changes

preserves the inductive invariant that dxi ▷ xi ↪→ f xi which guarantees semifix finds a least
fixed point.

This condition tells us how to generalize our approach: for each lattice type L, we require
a change minimization operator (\)L : L → L → L such that if dx ▷ x ↪→ y : L then
dx \L x ▷ x ↪→ y : L.⁵ In our runtime library (figure 4.2), we accomplish this by adding a
diff method to our Semilat typeclass:

class Semilat a where ...

diff :: a -> a -> a

diff dx x = x

This method admits a default implementation, dx \L x = dx, which trivially satisfies our
correctness condition. Although generic, this is inefficient, for it degenerates to the original
non-minimizing implementation of semifix:

dxi+1 = (f ′ xi dxi) \L xi+1 = f ′ xi dxi

Instead, we want dx \L x to be as small as possible (whatever that means for our runtime rep-
resentation of L) to reduce the work done by any operators applied after change minimization.
So we provide more practical implementations for finite sets and product types:

dx \{
eq
A} x = dx \ x (dx, dy) \L×M (x, y) = ((dx \L x), (dy \M y))

In our Haskell runtime this becomes:

instance Ord a => Semilat (Set a) where ...

diff = Set.difference

instance (Semilat a, Semilat b) => Semilat (a,b) where ...

diff (da,db) (a,b) = (diff da a, diff db b)

Unfortunately, for some semilattices the degenerate default is the only valid change mini-
mization operator. This includes any totally-ordered semilattice, such as N∞

min, the naturals
extended with positive infinity under minimum, which is useful for shortest path compu-
tations. This inability to meaningfully minimize changes is concerning for the efficiency of
computations which use these semilattices; an important direction for future work would
be to characterize the worst-case efficiency of seminaïve evaluation over different classes of
semilattice.

⁵ Given Datafun’s monotonicity typing, the reader may wonder whether and with respect to what (\)L must be
monotonic. In practice, on finite sets dx \ x is monotone in dx but not x, and this pattern will hold for our other
semilattice types as well. However, monotonicity in either argument is not required for correctness.
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Chapter 5

Related Work

5.1 Logic, higher-order abstraction, and semilattices
Datafun’s value proposition is to extend bottom up logic programming à la Datalog with two
additional features: higher-order functional abstraction and support for semilattices other
than finite sets. There is a good deal of work on combining logic programming with one
or the other of these features, and at least one other system – Flix – which, like Datafun,
proposes to combine all three. We’ll first briefly consider the systems which feature one or
the other and then move on to a more detailed comparison with Flix.

Higher-order extensional logic programming There are many possible approaches to
combining the power of logic programming and of higher-order abstractions. The most direct
approach would be to directly extend logic programming with support for higher-order
relations. Unfortunately, this quickly entangles one with thorny problems of decidability and
efficiency. Nonetheless, a line of work starting with Wadge (1991) has explored this approach.
Kountouriotis et al. (2005) investigate extending Datalog’s bottom-up approach with higher-
order relations, an approach very close to Datafun’s; however, while they present a prototype
implementation, they remark that it can be impractically slow for significantly higher-order
programs because it needs to synthesize many large relations. Later approaches move from a
bottom-up to a top-down approach, becoming less Datalog and more Prolog (Charalambidis
et al., 2013). By contrast, Datafun attempts to reduce implementation difficulties by narrowing
the scope of higher-order computation to functions, leaving relations first-order and decidable
– higher-order functional programming and decidable first-order relational programming
being both well-trodden areas.

Higher-order functional + top-down logic programming Of course, Datafun is not the
first language to attempt to add higher-order features to logic programming by combining
it with functional programming: Mercury (Somogyi et al., 1994) integrates higher-order
functional programming into a logical paradigm, while Curry (Antoy and Hanus, 2010)
cleanly combines the lazy functional language Haskell with top-down logic programming.
The main difference is that Mercury and Curry’s logical features are inspired by Prolog,
employing top-down search and unification, while Datafun is inspired by Datalog, uses
bottom-up enumeration, and imposes deliberate restrictions to ensure termination and avoid
Turing-completeness.
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Embedding database queries in functional languages Datalog has sometimes been
described as “relational algebra plus fixed points”, and there is a long line of work on
embedding database query languages into general-purpose languages, including pioneering
efforts such as Machiavelli (Ohori et al., 1989) and Kleisli (Wong, 2000), as well as more
recent systems such as Ferry (Grust et al., 2009) and LINQ in C# (Cheney et al., 2013). The
focus of this work has been on embedding query languages based on relational algebra into
general purpose languages, with an emphasis on statically compiling higher-order queries
into the first-order queries supported by existing database systems (Cheney et al. (2014) is a
representative example). Datafun’s approach is different: rather than embed Datalog into a
general purpose language, Datafun is also a “little language”, albeit one that happens to be a
higher-order functional language. We have not attempted to embed Datafun into an existing
language, as this would greatly complicate the context-management operations needed to
ensure monotonicity.

Logic with semilattices We know of two systems which extend Datalog with support for
semilattices without incorporating higher-order abstraction. IncAL (Szabó et al., 2018) is an
incremental Datalog engine with support for custom semilattices, aimed at static analysis.
BloomL (Conway et al., 2012) is a Datalog-inspired language aimed at distributed computing,
where monotonicity is used to ensure eventual consistency (Alvaro et al., 2011) and custom
semilattices are used to extend the range of types to which monotonicity analysis can be
fruitfully applied. Although both of these are clearly related to Datafun’s goals, neither
includes the crucial ingredient of higher-order abstraction that leads to most of Datafun’s
unique capacities, as well as its unique design and implementation challenges.

5.1.1 Flix

Flix (Madsen et al., 2016) and Datafun both augment Datalog with higher-order functional
programming and semilattice types, but they go about this merger of logic and functional pro-
gramming in different ways. Datafun embeds Datalog’s semantics into a functional language
by adding first-class support for finite sets and monotone fixed points, ensuring monotonicity
via a custom type system. Flix, however, is really two languages in a trenchcoat – one logical
and Datalog-inspired, the other functional. These language halves interoperate closely: the
logic fragment can use semilattices whose merge functions are defined in the functional
fragment, and with a recent extension (Madsen and Lhoták, 2020) the functional frag-
ment can manipulate first-class values representing groups of logic-fragment rules (“Datalog
constraints”) which can be composed and evaluated at run-time.

Our main contribution compared to Flix is to demonstrate that this separation between
functional and logic layers is unnecessary; they can be smoothly integrated by paying close
attention to semantics, and standard Datalog optimizations such as seminaïve evaluation
can be generalized to operate on functional languages, with the unexpected side-benefit of
revealing a theory of higher-order incremental monotone computation. The practical flip
side of this theoretical contribution is that Flix, because it separates functional from logic,
can reuse existing techniques for implementing and optimizing Datalog without needing to
reinvent them in a higher-order setting.

Flix and Datafun also have different approaches to monotonicity: Flix does not check
monotonicity via types, but monotonicity is nonetheless important for the interoperation of the
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logical and functional fragments; functions invoked in certain positions in the logic fragment
must be monotone to ensure that a fixed point exists. To this end, a verification toolchain
has been developed for Flix which employs SMT solving and symbolic execution to check
properties, including monotonicity but also safety and soundness of static analyses (Madsen
and Lhoták, 2018).

The advantage of checking these properties with such high-powered machinery is that
it better supports user-defined posets and semilattices: in Datafun, adding a new datatype
with a custom ordering is a matter for the language designer, but a Flix programmer may
do it for themself, if they can convince the verification machinery. The disadvantage is
that these verification techniques have more “black-box” behavior; they are less predictable
and reliable (in terms of resource usage, error message quality, and code accepted) than a
compositional type system. Nonetheless, for certain applications such as static analysis, the
use of user-defined semilattice types is highly desirable. We believe a fruitful direction for
future research would be to hybridize Datafun’s monotonicity type system with lightweight
verification techniques. In our ideal language, types with custom orderings would be defined
in a modular, encapsulated fashion. Verification would take place inside the module, to
ensure the interface it exposes has the properties (such as monotonicity) it claims, but a
compositional type-system would handle code external to the module, which acts as a client
of this verified interface.

5.2 Incremental computation
In chapter 3 we presented seminaive evaluation in Datalog and Datafun as a matter of
incrementalizing the inner loop of our fixed points to avoid recomputation. Our approach was
to only compute the changes between iterations, to which end we used a static transformation
to push changes through expressions in our language. However, this is only one of many
approaches to incremental computation. In this section we’ll examine other approaches and
how they relate to ours.

The core problem of incremental computation is to handle change while minimising work.
Most approaches to incremental computation are built around one of two insights into how
to do this: dependency tracking or finite differencing.

Dependency tracking The simplest way to avoid doing unnecessary work is to avoid re-
executing code if the data it depends on hasn’t changed, and re-use its previous result instead.
Generally these dependencies are represented by some sort of dependency graph. One of the
oldest and most familiar applications of this idea is the build system Make and its many
relatives. Perhaps even more ubiquitously, this strategy is used by spreadsheet software
such as Microsoft Excel, where cells’ contents may be (re)computed using the content of
other cells, and so on recursively (Mokhov et al., 2020). A long line of work starting with
self-adjusting computation (Acar, 2005; Acar et al., 2002) and descendant systems such as
Adapton (Hammer et al., 2014) apply dependency tracking to general-purpose programming
languages by tracing execution to construct a dynamic dependency graph.

It would be an intriguing line of future work to examine whether a dependency tracking
approach, probably building on prior work such as SAC or Adapton, would be useful for
computing Datafun’s monotone fixed points. However, Datafun was inspired by Datalog, and
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dependency tracking is not the approach taken by Datalog’s seminaïve evaluation. Instead, it
uses finite differencing.

Finite differencing Dependency tracking approaches incrementalization with a yes-or-no
mindset: did our dependencies change? Suppose instead we ask the question: how did our
dependencies change? By analyzing this difference we may be able to compute the resulting
difference to our output. For constant-time operations over atomic data, like adding two
64-bit numbers, this may not be any faster than simple re-execution. But for bulk operations
over collection types, where changes can be much smaller than the original data, differencing
is a more natural approach.

For example, you could incrementally sum a list of changing numbers using a dependency
graph – ideally a balanced tree, so updates take O(log n) steps. But with direct access to
the difference, when an element changes you can simply add the difference to the previous
sum. This is O(1), easily extended to handle new or removed elements, and doesn’t require
balancing or rebalancing a tree.

However, this example works only because addition on the integers commutes and asso-
ciates.1 This is what allows us to combine a sum

∑
i xi with a difference dx to the jth element

and find the updated sum:

dx+
∑
i

xi =
∑
i

{
xi + dx if i = j

xi otherwise

Unlike the fairly generic dependency-graph strategy, efficient derivatives depend crucially on
the structure of the modification to the input. Foundational work by Paige and Koenig (1982)
takes this literally, differentiating set-valued expressions with respect to lines of program
code modifying a depended-on variable. More recent work represents these modifications
(the “differences” of “finite differencing”) as values of a datatype equipped with some kind
of algebraic structure. For instance, DBToaster incrementally maintains SQL queries using
rings (Koch, 2010, 2013); Differential Dataflow uses groups (McSherry et al., 2013); recent
work on incremental Datalog uses monoid actions (Alvarez-Picallo et al., 2019); and Datafun
uses semilattices.

Since finite differencing is advantageous for operations over large collections, but requires
algebraic insight that makes it non-obvious how to apply it to arbitrary programs, it should be
no surprise that many of the examples just cited come from the database research community,
which often deals with structured operations on bulk data. However, this approach has
recently crossed over into the PL research community by way of the incremental λ-calculus,
and it is from this line of work that Datafun takes inspiration.

5.2.1 The incremental λ-calculus

The incremental λ-calculus was introduced by Cai, Giarrusso, Rendel, and Ostermann (2014)
and further developed by Giarrusso, Régis-Gianas, and Schuster (2019) and in Giarrusso’s
PhD thesis (2020). We briefly discussed our adaptation of it in §3.2, but here we give a slightly

1 More precisely, associativity and commutativity suffice because our aggregation (summation) is the same as the
operator that applies our differences (addition). If we were taking the maximum of the list instead of its sum,
this strategy would not work, even though maximum itself commutes and associates.
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fuller comparison (though still only a summary) between our formulation, the original, and
its further developments.

Change structures

The insight of the incremental λ-calculus that is it is possible to extend the differencing
approach to higher-order computation by finding an appropriate notion of change for func-
tions. To this end, the incremental λ-calculus associates each type with a change structure
capturing how values of that type may change, and how to represent these changes. The
precise formal definition of a change structure differs between the various versions of the in-
cremental λ-calculus. A good starting point is the notion of a basic change structure introduced
in Giarrusso’s PhD thesis (2020, chapter 12, definition 12.1.1): a basic change structure on a
set S consists of a change set ∆S and a validity relation dx ▷ x1 ↪→ x2 : S indicating that
dx : ∆S is a valid change from the base points x1 : S to x2 : S.

For example, we can endow the naturalsNwith a basic change structure by letting changes
be integer differences ∆N = Z and letting dx ▷ x1 ↪→ x2 : N ⇐⇒ x1 +dx = x2. To handle
higher-order computation, Giarrusso endows function types A → B with a basic change
structure as follows (definition 12.1.8): let ∆(A → B) = A → ∆A → ∆B and define the
validity relation by saying that a valid function change df ▷ f1 ↪→ f2 : A→ B is one which
takes an argument x : A and valid change to it dx ▷ x1 ↪→ x2 : A to a valid output change
df x1 dx ▷ f1 x1 ↪→ f2 x2 : B, that is, a change between the original function applied to its
original argument f1 x1 and the updated function applied to an updated argument f2 x2.

Giarrusso goes on to define more elaborate “full” change structures (definition 13.1.1)
which additionally possesses operators x⊕ dx for updating a base point by a change, y⊖ x

for finding a change between two points, 0 for finding a zero change from a point to itself,
and dx⊚ dy for composing two changes.2

Datafun’s change structures (definition 14) lie somewhere between Giarrusso’s basic and
“full” change structures, modified to handle monotonicity: in Datafun S (or VS in our notation)
and ∆S are not sets but posets. For example, our change structures for functions almost
coincide, except that because of Datafun’s monotonicity typing we must let ∆(A → B) =

□A→ ∆A→ ∆B, using□ to allow function changes to be non-monotone with respect to the
base point. The root divergence here is one of goals: in Datafun we are not trying to respond
to arbitrary changes to our whole program’s input, but only to incrementalize the inner loops
of fixed points to calculate them more efficiently. Because these fixed points are monotone,
in Datafun we need only handle increasing change (enforced by our soundness condition).
The price of this simplification is that we must pay careful attention to the interaction of
incrementalization with Datafun’s monotonicity-checking modal type system in our program
transformation and its proof of correctness.

Because of the limited way Datafun uses incremental computation, we only need some of
the operators from Giarrusso’s full change structures, and only at certain types. We use 0

2 In the original presentation by Cai et al. (2014) these operators (except ⊚, which is not present) are taken
as primary rather than as additions to a basic change structure, and the validity relation dx ▷ x1 ↪→ x2 : S is
reduced to a set of valid changes ∆S x1 ⊆ ∆S. Datafun’s approach to seminaïve computation was originally
inspired by this paper, but we moved to a validity-relation approach because of the difficulties of defining these
operators in a monotonicity-aware setting; thus the validity relation approach to change structures appears to
have been indendently invented in both Datafun and in Giarrusso’s work.
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explicitly in the ϕ and δ translations of loops, for (x ∈ e) f, to supply the zero change for
the elements x; but since these elements are always of first-order type

eq
A, we only need to

compute zero changes for first order values. We implicitly use ⊕ in restricted form in the
implementation of seminaïve fixed points, to combine the value xi of the ith iteration with
its corresponding change dxi. However, fixed points are always at first-order lattice types

fix
L, and because of the way our change types are constructed ⊕ at these types is simply ∨.
Even more subtly, we use ⊖ in the same place, to find the kick-off change between the first
iteration x1 = f ⊥ and the zeroth x0 = ⊥; but, again because of the way these change types
are constructed, f ⊥ ⊖ ⊥ is simply f ⊥. These simplifications are fortuitous, because the
interaction of the fully general versions of these operators with monotonicity typing presents
several difficulties.3

The derivative translation

Although change structures allow us to specify the notion of a derivative that takes input
changes to output changes, they do not by themselves tell us how to find such a derivative.
The incremental λ-calculus and Datafun both accomplish this by static differentiation: we give
source-to-source translations from a program to its derivative, essentially by decomposing
a program into primitive operations which we know how to differentiate and recombining
these using an analogue of the chain rule.

Cai et al. (2014) call this translation Derive, while Datafun calls it δ. Datafun’s approach
was directly inspired by Cai et al., and where their features overlap the two translations
nearly coincide. For example, the derivative of function application is:

Derive(e1 e2) = Derive(e1) e2 Derive(e2)
δ(e1 e2) = δe1 [ϕe2] δe2

Besides notation there are two differences here, which are indicative of the differences from
the incremental λ-calculus more generally: (1) Datafun is concerned with monotonicity, and
so since the function changes may be non-monotone in their first argument we need to box
it; and (2) besides δ, Datafun has another term translation ϕ which speeds up execution
by executing fixed points seminaïvely, and for technical reasons these translations must be
mutually-recursive; wherever Derive uses a part of the original term it is given, δ instead
uses its ϕ-translation.

3 For starters, in general x⊖ y may not exist unless x ⩾ y since in Datafun we only support increasing changes.
For another example, it is difficult to define the ⊕ operator internally in a way that respects monotonicity typing
at higher type. Recall that in Datafun all functions are monotone and ∆(A → B) = □A → ∆A → ∆B. The
natural definition of ⊕A→B would seem to be:

⊕A→B : (A→ B)× (□A→ ∆A→ ∆B)→ (A→ B)

(f⊕ df) = λX. f X⊕ df [X] (0 X)

However, this passes the monotone variable X to the function change df, which takes it as a discrete argument –
it does not type-check! Indeed, it is not hard to come up with functions f, df such that the result of f⊕ df as
defined above is not a monotone function.
These difficulties might be overcome with further careful work; for example, it should be possible to prove

that f⊕df is monotone so long as df is a valid change to f. This would make⊕, like semifix, a “trusted primitive”
whose implementation cannot be expressed in Datafun itself.
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While Datafun adds complications in the form of monotonicity typing and the seminaïve
transformation, later work on the incremental λ-calculus adds complications of its own,
extending it to handle the untyped λ-calculus and therefore nontermination; to prove cor-
rectness, they use a step-indexed logical relation (Giarrusso et al., 2019). They also address
the problem of caching intermediate results, but in order to explain this problem and its
relevance to Datafun, it will help to briefly revisit the idea of dependency tracking.

Dependency tracking as a change structure

We started this section by comparing dependency tracking to finite differencing, observing
informally that finite differencing generalizes dependency tracking by asking not merely “did
our dependencies change?” but “how did our dependencies change?” This insight can be
formalized using the incremental λ-calculus’s change structures, as there is a simple generic
change structure which captures the question “did it change?”. Allowing ourselves to dip into
pseudo-Haskell for a moment, consider the parameterized type Update A defined by:

data Update A = old | new A

Any type A may be endowed with a basic change structure by letting ∆A = Update A and
letting dx ▷ x ↪→ y : A be defined by:

old ▷ x ↪→ x : A new y ▷ x ↪→ y : A

This change structure has the wonderful property of trivializing differentiation; one valid
derivative of f : A→ B is simply:

f ′ x old = old
f ′ x (new y) = new (f y)

The only complication is handling multi-argument functions: since Update (A × B) ̸∼=
Update A × Update B, a function taking multiple arguments g : A → B → C needs a
slightly more interesting derivative:

g ′ : A→ Update A→ B→ Update B→ Update C

g ′ a old b old = old
g ′ (new a) b old = new (g a b)

g ′ a old (new b) = new (g a b)

g ′ (new a) (new b) = new (g a b)

The general strategy is to rerun the original function if any of its arguments change, reusing
the previous value for arguments that did not change. This is precisely the strategy behind
dependency tracking.

Caching intermediate results

We have observed that dependency tracking’s re-execution strategy can be seen as a special
case of finite differencing. However, one thing all dependency tracking systems do is store
intermediate results between runs so they can reuse them if they don’t need to be recomputed
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because their dependencies haven’t changed. Thus far our presentation of the incremental λ-
calculus (or indeed of Datafun) has not mentioned caching intermediate results. This presents
an issue; although our goal is to translate input changes into output changes, in general
computing the output difference may require both the input difference and the original input.
For example, in the incremental λ-calculus the derivative of a function f : A→ B has type
A→ ∆A→ ∆B, taking the original argument A as well as its change ∆A. Where does this
original argument come from?

By default, both Datafun and the incremental λ-calculus as originally introduced in Cai
et al. (2014) recompute these arguments. For example, recall the derivatives of function
application in each system:

Derive(e1 e2) = Derive(e1) e2 Derive(e2)
δ(e1 e2) = δe1 [ϕe2] δe2

These expressions recalculate the original argument e2 (or in the case of Datafun, its sped-
up version ϕe2). On its own, recomputation is a losing strategy: the whole point of finite
differencing is to compute the changemore efficiently than by recomputing the output! Luckily,
sometimes we do not need this original input. A simple example is summing a list of changing
numbers: the change to the sum is simply the sum of the changes to each element; the
original list is not necessary to compute the change. Or, for a natural example in the context
of Datafun, fix a binary relation edge and consider two different functions, consing and
appending, defined as follows (recall that R • S stands for relation composition):

consing path = edge ∪ (edge • path)
appending path = edge ∪ (path • path)

The fixed point of either function computes the transitive closure of edge: consing by extending
paths one edge at a time, and appending by appending paths together. Now let’s take a look
at these functions’ derivatives:⁴

consing ′ path dpath = edge • dpath
appending ′ path dpath = (path • dpath) ∪ (dpath • path) ∪ (dpath • dpath)

Observe that consing ′, unlike appending ′, does not need its first argument path, representing
the original argument value.

Following the incremental λ-calculus we call functions whose derivatives do not depend
on their original input, like consing or the sum of a list, self-maintainable. Because the
transformation in Cai et al. (2014) does not cache intermediate results, it is really only suitable
for programs composed primarily of self-maintainable functions, where the recomputation
of these unused original arguments can be optimized out. To handle non-self-maintainable

⁴ To obtain these derivatives, let δedge = ∅ since we assume the edge-set is fixed and apply the rules:

δ(R ∪ S) = δR ∪ δS

δ(R • S) = (R • δS) ∪ (δR • S) ∪ (δR • δS)
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behavior, follow-up work by Giarrusso et al. (2019) extends the derivative translation to
cache intermediate results.

Datafun takes a simpler approach. We cache intermediate results in exactly one place:
the implementation of semifix. Recall that, to compute the fixed point of a function f, semifix
computes the sequences xi, dxi defined by:

x0 = ⊥ xi+1 = xi ∨ dxi

dx0 = f ⊥ dxi+1 = f ′ xi dxi

Since xi+1 and dxi+1 depend only on their immediate predecessors, we need exactly two
pieces of state to produce this sequence: the previous iteration xi and its change dxi. This
is our only cache; unless f is self-maintainable, any intermediate values it requires will be
recomputed by dxi+1 = f ′ xi dxi. Serendipitously, in practice most step functions are either
self-maintainable or do not compute expensive intermediate results.

For instance, consider implementing transitive closure as the fixed point of either consing
or appending. We have already observed that consing is self-maintainable.⁵ Even though
appending is not, however, it does not require extensive recomputation:

dxi+1 = appending ′ xi dxi = (xi • dxi) ∪ (dxi • xi) ∪ (dxi • dxi)

All intermediate results in this expression (for example, xi • dxi) depend upon dxi; there is
no work that could be saved by caching them, because the cache would be invalidated imme-
diately. We conjecture that this holds so often for the programs we have examined because
these fixed point step functions are essentially unions of (possibly many-way) relational joins.
(Indeed, in Datalog this is baked into the language syntax!) It’s not too hard to see that the
derivative of a union of joins is itself a union of joins, and each component join will depend
on at least one changing relation. So the question reduces to whether relational joins can be
incrementalized efficiently without caching intermediate results. In the case of binary joins,
at least, the answer is yes. Pursuing this conjecture further we leave to future work.

5.2.2 The monoidal approach to change

The incremental λ-calculus has its notion of a change structure; Datafun has another; but
these do not exhaust the space of possibilities. A line of work starting with Alvarez-Picallo et al.
(2019), and most thoroughly expounded in Mario Alvarez-Picallo’s thesis (2020) has explored
representing change structures using monoid actions, which they call change actions. A change
action on a set A consists of a monoid (∆A,+A, 0A) and a monoid action ⊕A : A×∆A→ A.
As before we interpret ⊕ as applying a change to a base value. The monoid action law
x⊕ (dx+ dy) = (x⊕ dx)⊕ dy says that + composes changes (corresponding to ⊚ in the
incremental λ-calculus); and the other law x⊕ 0 = x makes 0 a zero change to any value.
The primary differences from the incremental λ-calculus are:

1. The lack of a ⊖ operator, thus allowing for incomplete change structures, where it may
not be possible to find a change from one value to any other.

⁵ In fact, it is an exemplar of a large class of self-maintainable functions: join-distributive maps.
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2. The requirement that there exists a single value 0 : ∆A which acts as a universal zero
change, rather than an operator 0 : A→ ∆A that finds a zero change to a particular
value.

3. Change actions lack a validity relation: every change must be valid for every base point.

Tantalizingly, Alvarez-Picallo et al. (2019) explicitly use this notion of change action to give a
differentiation/incrementalization transformation for Datalog programs. Might this monoidal
approach work in Datafun as well? At first it seems as though it might: many of Datafun’s
change structures, in particular those on semilattice types, fit into this structure: for instance,
on finite set types {

eq
A} the change action is simply sets ∆{

eq
A} = {

eq
A} with + = ⊕ = ∪ and

0 = ∅.
However, points (2) and (3) above produce problems when considering the change

structure for functions. The incremental λ-calculus and Datafun both take function changes
to be generalizations of function derivatives, such that the zero-change to a function is its
derivative. But this is incompatible with requiring a universal zero-change 0 : ∆(A → B);
there is no “universal derivative”. For this reason both Alvarez-Picallo et al. (2019) and
Alvarez-Picallo (2020) use pointwise function changes ∆(A → B) = A → ∆B, letting
(f⊕df) x = f x⊕df x. This fundamental divergence from the incremental λ-calculus would
require redesigning the ϕ/δ transformations – neither the 2019 paper nor Alvarez-Picallo’s
thesis give an explicit derivative transformation for a higher-order language.

However, there is a deeper issue: in a monotonicity-aware context like Datafun, we must
choose whether the pointwise change functions are required to be monotone, ∆(A→ B) =

A → ∆B, or allowed to be non-monotone, ∆(A → B) = □A → ∆B. Both choices have
serious problems:

Non-monotone changes If we allow function changes to be non-monotone we have an im-
mediate problem: the updated function f ⊕ df = x 7→ f x ⊕ df x is not guaranteed
to be monotone. The only way to repair this without requiring that the change itself
be monotone would seem to be to re-introduce the incremental λ-calculus’s notion of
validity, and say that df is only a valid change to f if f⊕ df remains monotone. This
would require a considerable elaboration of the theory of change actions.

Monotone changes Unfortunately, insisting that pointwise function changes be monotone
makes it impossible to differentiate some perfectly reasonable functions. For example,
take the integers Z equipped with the natural change action ∆Z = Z, ⊕Z = +Z =

+, 0Z = 0, and consider the function expression λy. max(x, y) : Z→ Z. Now suppose
x increases from 0 to 1; how does this function change in response? In other words, what
is the change between max(0, ) and max(1, )? Tabulating its values for y = 0, 1, 2, ...

we can clearly see it is not monotone:

y 0 1 2 · · ·
max(0, y) 0 1 2 · · ·
max(1, y) 1 1 2 · · ·

max(1, y) − max(0, y) 1 0 0 · · ·

Thus, forcing function changes to be monotone with respect to the base point is a very
limiting approach.
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It is possible that by combining change actions with a validity relation, thus allowing the
monoid action to be partial, one could achieve a synthesis of the change action approach and
Datafun’s higher-order monotonicity. We leave this to future work.
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Chapter 6

Looking Back and Forward

To the extent that we have had in this dissertation a thesis, a singular statement we have
aimed to demonstrate, it is that we can seamlessly integrate Datalog’s features into a typed
higher-order functional language by deconstructing them semantically. Or, as we said in the
introduction (page 13):

The goal of this thesis is to design a language which improves on Datalog’s ability
to express monotone fixed point computation over semilattices by finding ways
to lift Datalog’s restrictions without sacrificing either its simple semantics or its
practical implementation strategies.

Unfortunately, we cannot claim to have definitively proven our thesis: we have made a start
towards this goal, but much remains to be done.

The examples in chapter 2 show Datafun can at least express Datalog-style queries.
Moreover in §1.4 we listed four things Datalog’s restrictions do not permit: (1) functional
abstraction, (2) semilattices other than set union, (3) arithmetic, user-defined functions,
and aggregation, and (4) compound data. Of these, Datafun makes functional abstraction,
arithmetic, user-defined functions, and compound data straightforward. It does not include
semilattices other than sets (and products of sets), nor aggregations other than semilattice
aggregation (for-loops). However, its design lays a clear foundation for such extensions: new
semilattices can be added as semilattice types, and aggregations can be added as primitive
higher-order functions.

In addition to lifting Datalog’s restrictions, we also wished to preserve two desirable
qualities: simple semantics and practical implementation strategies. On each count, we have
achieved only qualified success.

Datafun possesses a simple denotational semantics that captures Datalog’s ability to
manipulate finite relations: Datalog’s recursively-defined relations become Datafun’s bottom-
up fixed points, and Datalog’s stratification is enforced by Datafun’s monotonicity types.
However, least fixed points also require an ascending chain condition; here Datafun and
Datalog diverge. Datalog makes a clear distinction between relations and the terms they
range over, and enforces constructor-freedom: programs may not construct new terms not
present in the source program. This ensures a finite universe of terms, and thus an ascending
chain condition for relations over this universe.

By contrast, in Datafun relations and terms are simply types of values; this adds flexibility
but requires a different way to guarantee the ascending chain condition. In theory we require
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the type at which we take a fixed point to satisfy the ACC; for set types, this requires the
element type be finite. In practice we have hand-waved this condition away – for instance,
our regular expression combinators from §2.2.3 use fix at type {int}, representing sets of
indices into a string. Although valid indices into a particular string form a finite set, the
integer type int is infinite. Semantically, this is a serious flaw in the foundations of our
approach. Practically, it is on par with existing approaches: real Datalog engines routinely
permit constructors or arithmetic, putting the onus on the programmer to avoid infinite
relations and non-termination.

As for practical implementation strategies, we have constructed a Datafun implementation
supporting seminaïve evaluation, a central Datalog technique without which recursive rela-
tions are impractical to compute; but this required a significant novel development of theory,
and represents only one of many techniques necessary for an efficient implementation. It is
plausible, but hardly certain, that other standard techniques – in particular query planning
and optimization (necessary to replace nested for-loops with efficient relational joins) and
demand transforms such as magic sets (which make queries over large recursively defined
relations practical by computing only a smaller relevant subset of the relation) – could be
extended to Datafun; this remains future work.

6.1 Directions forward
In this section we sketch some directions for future work on Datafun to address the short-
comings identified in the previous section.

The ascending chain condition As we have discussed, Datafun’s semantics for fix require
ACC; our motivating examples satisfy this in principle, but Datafun’s simple type system
cannot capture this. For instance, we might represent the nodes of a graph as integers; but
while the graph may be finite, the integers are infinite. To remedy this, we must either (a)
accept nontermination and adjust our semantics or (b) reject nontermination and adjust our
language.

Accepting nontermination is simpler, but it removes potential optimizations by invalidating
many program equalities, for instance loop interchange:

for (x ∈ e1, y ∈ e2) e3 = for (y ∈ e2, x ∈ e1) e3 (when x, y not used in e1, e2)

This equation fails if e1 is nonterminating but e2 = ∅ or vice-versa. Perhaps some adjustment
to how Datafun expresses queries like this, such as ditching monadic set-comprehensions in
favor of applicative ones (see query planning and optimization below), might resolve this.

Rejecting nontermination requires creatively re-thinking how we guarantee ACC. We
might, for instance, capture reasoning about the finiteness of sets at the type level, mechaniz-
ing our hand-waving about taking a fixed point over finite sets of nodes rather than of integers.
Or, we might try to capture the spirit of Datalog’s no-constructor restriction by singling out a
class of “uncreative” functions that do not create new data; perhaps by treating “creating
data” as an effectful operation,1 or perhaps by exploiting parametricity to guarantee all data
in our output came from our input.

1 Here is a simple system along these lines: introduce a monad Bless and type constructor Holy with the methods:
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Query planning and optimization To implement Datafun efficiently, we need to be able
to identify relational joins. Identifying joins is also a necessary first step if we wish to apply
standard query planning and optimization techniques. Datafun expresses joins as nested
loops; for instance, relational composition (a simple equijoin):

• : {
eq
A×

eq
B}→ {

eq
B×

eq
C}→ {

eq
A×

eq
C}

S • T = for ((a, b) ∈ S) for ((!b, c) ∈ T) {(a, c)}

Implementing this as it is written, using a nested loop, has time-complexityO(|S| · |T |). An on-
the-fly hash-join, building an index on the

eq
B column of either S or T , takesO(|S|+|T |+|S • T |).

Unfortunately, nested for-loop expressions are in general not reducible to joins, because the
inner loop can loop over a function of the outer loop variable: (for (x ∈ S) for (y ∈ f(x)) . . . ).
This does not happen in Datalog and makes query planning significantly harder: in database
parlance, we’ve expressed joins (easy) as subqueries (hard). We could address this in the
compiler by heuristically identifying nested loops which can be implemented as joins; or,
we could force our comprehensions to be applicative rather than monadic, banning the
problematic nesting entirely.

Moreover, there remains the question of what to do once we have identified joins. We
could again attempt to lift standard database techniques to apply to a higher-order setting;
or, we could attempt to sidestep this work by compiling Datafun into an existing Datalog
dialect by using some variety of defunctionalisation.

Aggregations and the Boom hierarchy Aggregations can be added to Datafun as primitive
higher-order functions and pose no semantic issues so long as their types properly capture
their (non-)monotonicity. For instance, consider counting and summation:

size : {
eq
A}→ int sum : (□

eq
A→ int)→ □{

eq
A}→ int

size s = |s| sum f s =
∑
x∈s

f(x)

Throwing in each aggregation we need as a primitive function is, however, somewhat ad-hoc;
we might unlock a richer approach if we pay attention to the semantics of aggregations. Many
aggregations arise from free functors into categories of algebraic structures. For instance,
bags (finite multisets) form the free commutative monoid; and given a map from a bag’s
elements into a commutative monoid (M,+, 0), we can aggregate the bag’s contents into M:

bagsum : (A→M)→ Bag A→M

bagsum f b =
∑
x∈b

f(x)

Modulo monotonicity, sum arises from bagsum by letting M = (Z,+, 0). Many common
aggregations and some of the most common data structures used in programming arise in a

anoint : A→ Bless (Holy A) disregard : Holy A→ A

such that map disregard (anoint x) = pure x. The idea is that Holy A represents the finite subset of values of A
which have been anointed. Since functions passed to fix are pure, they cannot anoint new values; so we may
treat Holy A as a finite type, and thus (for instance) use fix at the type {Holy int} even though we may not at
{int}. Alas, actually programming with anoint/disregard is an exercise in boilerplate.
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similar way from three free functors in particular: lists as the free monoid, bags as the free
commutative monoid, and finite sets as the free idempotent commutative monoid (equivalent
to a semilattice). These are three layers of the “Boom hierarchy” (Backhouse and Hoogendijk,
1993).2 Each free functor forms half of an adjunction between Set and the respective category
of algebraic structures (Mon, CMon, and Semilat). Our semantics for Datafun is built over
the adjunctions between Set, Poset, and Semilat; can we extend this to cover the other
adjunctions of the Boom hierarchy, and uncover a language for expressing queries over these
three data structures and their corresponding varieties of aggregation?

6.2 Lessons and surprises
Research is a process of discovery: sometimes you find what you expected, sometimes you
do not; sometimes you find more questions. This section presents some insights gained and
questions raised in the course of writing this dissertation which, while not entirely novel, at
least surprised this author.

Change minimization and precise differences The need to minimize changes to avoid
junk piling up during seminaïve fixed point iteration and eliminating any asymptotic speed-up
is obvious in retrospect (see §4.3), but was overlooked by Arntzenius and Krishnaswami
(2020), their reviewers, and the examiners of the initial version of this dissertation. The
author only realized it when an undergraduate student pointed out an instance of it in the
Q & A for a talk given at POPL 2020.

The root of this oversight is an early decision, when applying the incremental λ-calculus
to Datafun, to not compute precise changes – in particular, to let δ(e ∪ f) = δe ∪ δf instead
of the more precise (δe \ f) ∪ (δf \ e), because the former, simpler expression does less
work and avoids recomputing e and f. In light of the need for change minimization, this
decision is questionable. But because our efforts in chapter 3 focused almost entirely on
proving correctness, and because our initial benchmark in chapter 4 (a linear graph) has at
most one path between two nodes and thus fails to trigger this issue, we failed to notice this
inefficiency. Change minimization addresses this issue, but the question remains: might it be
better to just compute precise changes in the first place?

Expressiveness versus tractability There is a tradeoff in programming language design
between expressiveness and tractability: the more powerful the language, the more complex
it becomes to reason about programs in that language. Datalog’s power comes from its
limitations: it restricts logic programming to the bare minimum – finite relations – and in
return gains a rich theory of implementation and optimisation techniques. Datafun is an
attempt to loosen Datalog’s restrictions; in hindsight it’s clear we might run into issues of
tractability.

For instance, we have already seen that by allowing monadic set-comprehensions, a
natural choice from a functional programming standpoint and one made without careful
consideration on the part of this author, we complicated the task of query planning, ignoring

2 The other layer of the Boom hierarchy is trees, specifically binary trees with data only at the leaves: the free
magma. Few useful aggregations form magmas, and although trees are ubiquitous in computing, few are of this
particular form.
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hard-won wisdom from the field of databases incorporated implicitly into the design of
Datalog.

More generally, by deeply integrating functional and logic programming, Datafun extends
Datalog’s expressivity – but is it worth the price? There are more conservative ways to
address Datalog’s shortcomings which may require less reinvention of existing techniques;
for instance, using code generation or staged programming to allow modular code re-use; or
the approach taken by Flix: two interlocking but separate logic and functional languages.
The only examples we have given that deeply intertwine the functional and logic features of
Datafun are the regular expression combinators from §2.2.2–2.2.3, which represent regular
expressions as functions producing relations and regular expression constructions as higher-
order functions (combinators). This is cute, but as justifications for a dissertation’s worth of
work go it is fairly thin. Higher-order programming sometimes unlocks unusually powerful
or concise solutions to existing problems; can we find other motivating examples that take
advantage of Datafun’s unique feature set?

The diversity and unity of incremental computation The problem of seminaïve evaluation
is an instance of incremental computation – one instance among many. As we explored in
§5.2, there appear to be as many approaches to incremental computation as there are
applications of it, including a zoo of incremental build systems, several varieties of self-
adjusting computation, and multiple approaches to incremental maintenance in database
systems. Even user interfaces involve incremental computation: for performance reasons,
web UI libraries like React avoid re-rendering UI components whose state has not changed.3

These diverse systems nonetheless share a small set of core techniques: tracking dependen-
cies so we know what needs to be updated, caching intermediate values to re-use them when
they don’t change, and propagating changes – perhaps as all-or-nothing updates, perhaps
as diffs. This latter apparent difference (between what we called dependency tracking and
finite differencing approaches) can, however, be resolved by seeing all-or-nothing updates
as a degenerate kind of diff, as we showed in §5.2.1. The theory of change structures –
originated by Cai et al. (2014) and further developed by Giarrusso (2020), Alvarez-Picallo
(2020), and in the present work – hints at the beginnings of a unified theory of incremental
computation. However, all these works use slightly but crucially differing notions of change
structure; perhaps incremental computation is destined never to be unified at all.

6.3 Successes summarized
So far in this chapter we have largely explored how this effort falls short or could be improved
on in future work. However, chapters 2 and 3 respectively represent significant successes for
this semantic-deconstruction approach; if we were to distill this dissertation into their key
ideas, it would be these:

Model monotonicity with modal types. Datalog can be summarized as relational algebra plus
stratified recursive queries. Modulo implementation subtleties, relational algebra embeds
straightforwardly in a functional language via finite sets and set comprehensions. We

3 https://web.archive.org/web/20220223155533/https://reactjs.org/; see also https://web.archive.

org/web/20220907152744/https://blog.janestreet.com/incrementality-and-the-web/ for a discus-
sion of incrementality in web UI libraries.
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have shown that stratified recursive queries also embed nicely, so long as we locate our
semantics in Poset to capture compositional reasoning about monotonicity. The main
difficulty is the interaction of monotone and non-monotone functions; this arises from
the discreteness comonad □, and can be handled with a simple modal type system.

To find fixed points faster, incrementalize! Finding a fixed point by iteration involves repeat-
edly changing a function’s input to match its changing output. Doing this naïvely is
asymptotically inefficient; to do it efficiently, we must efficiently propagate changes. This
is not only the essence of seminaïve evaluation in Datalog, but an instance of a greater
problem of automatic incremental computation. Prior work on the incremental λ-calculus
shows that incremental computation can be achieved in higher-order languages; we have
extended it to Datafun and shown that by modifying it to consider only increasing changes,
it gives rise to seminaïve evaluation.
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Appendix A

Proofs omitted from main text

We state these lemmas and theorems in dependency order, so that nothing is used before it
has been proven. This is not always the order in which they are stated in the text.

A.1 Datafun
Theorems and lemmas from chapter 2.

Lemma 31. If X : A ∈ Γ or x :: A ∈ Γ and Γ ⊑ ∆ then X : A ∈ ∆ or x :: A ∈ ∆.

Proof. Recall that although we write them differently we regard X and x as the same variable.
Let H stand for the hypothesis in our assumption, either X : A or x :: A respectively. Then by
induction on the derivation of Γ ⊑ ∆:

Case ε ⊑ ε. By contradiction, since H ∈ ε is impossible.

Case
Γ ′ ⊑ ∆ ′

Γ ′, H ′ ⊑ ∆ ′, H ′ . If H = H ′ we are done. Otherwise, H ∈ Γ ′, so apply the IH.

Case
Γ ⊑ ∆ ′

Γ ⊑ ∆ ′, H
. Apply the IH.

Case
Γ ′ ⊑ ∆ ′

Γ ′, X : A ⊑ ∆ ′, x :: A
. If H = X : A we are done. Otherwise, H ∈ Γ ′, so apply the IH.

Lemma 32. If Γ ⊑ ∆ then ⌈Γ⌉ ⊑ ⌈∆⌉.

Proof. By induction on Γ ⊑ ∆:

Case ε ⊑ ε. Immediate.

Case
Γ ′ ⊑ ∆ ′

Γ ′, H ⊑ ∆ ′, H
.
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Either H is discrete x :: A, in which case ⌈Γ ′, H⌉ = ⌈Γ ′⌉, H ⊑ ⌈∆ ′⌉, H = ⌈∆ ′, H⌉ by
cons and our inductive hypothesis; or H is monotone X : A, in which case ⌈Γ ′, H⌉ =
⌈Γ ′⌉ ⊑ ⌈∆ ′⌉ = ⌈∆ ′, H⌉ by our inductive hypothesis alone.

Case
Γ ⊑ ∆ ′

Γ ⊑ ∆ ′, H
.

Then ⌈Γ⌉ ⊑ ⌈∆ ′⌉ by our inductive hypothesis. Depending upon whether H is monotone
or discrete, we have either ⌈∆ ′, H⌉ = ⌈∆ ′⌉ (in which case our inductive hypothesis
suffices) or ⌈∆ ′, H⌉ = ⌈∆ ′⌉, H, in which case by cons and transitivity ⌈Γ⌉ ⊑ ⌈∆ ′⌉, H.

Case
Γ ′ ⊑ ∆ ′

Γ ′, X : A ⊑ ∆ ′, x :: A
.

Then ⌈Γ ′, X : A⌉ = ⌈Γ ′⌉ while ⌈∆ ′, x :: A⌉ = ⌈∆ ′⌉, x :: A. By our IH, we have ⌈Γ ′⌉ ⊑
⌈∆ ′⌉, and therefore by drop we have ⌈Γ ′⌉ ⊑ ⌈∆ ′⌉, x :: A as desired.

A.2 Seminaïve evaluation
Theorems and lemmas from chapter 3.

Lemma 19. Φ
eq
A =

eq
A for all equality types

eq
A.

Proof. Induct on
eq
A applying the equations in figure 3.1, recalling from figure 2.1 that the

grammar of equality types is
eq
A ::= 1 |

eq
A×

eq
B |

eq
A+

eq
B | {

eq
A}.

Lemma 20. At each semilattice type L, we have ∆L = L.

Proof. Induct on L applying the equations in figure 3.1, recalling from figure 2.1 that the
grammar of semilattice types is L ::= 1 | L1 × L2 | {

eq
A}.

Theorem 22 (Weakening). If ∆ ⊒ Γ and Γ ⊢ e : A then ∆ ⊢ e : A.

Proof. By induction on the derivation of Γ ⊢ e : A.

Cases
X : A ∈ Γ

Γ ⊢ X : A

x :: A ∈ Γ

Γ ⊢ x : A
. By lemma 31.

Cases
Γ ⊢ () : 1 Γ ⊢ ⊥ : L

. Trivial.
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Cases where the premises have the same context as the conclusion, namely:

Γ ⊢ e : A→ B Γ ⊢ f : A

Γ ⊢ e f : B

(Γ ⊢ ei : Ai)i

Γ ⊢ (e1, e2) : A1 ×A2

Γ ⊢ e : A1 ×A2

Γ ⊢ πi e : Ai

(Γ ⊢ ei : L)i

Γ ⊢ e1 ∨ e2 : L

Γ ⊢ e : □(A+ B)

Γ ⊢ split e : □A+□B

Γ ⊢ e : □(
fix
L→

fix
L)

Γ ⊢ fix e :
fix
L

Apply the same typing rule to our inductive hypotheses.

Cases where the premises add hypotheses to the context, namely:

Γ, X : A ⊢ e : B

Γ ⊢ λX. e : A→ B

Γ ⊢ e : □A Γ, x :: A ⊢ f : B

Γ ⊢ let [x] = e in f : B

Γ ⊢ e : A1 +A2 (Γ, Xi : Ai ⊢ fi : B)i

Γ ⊢ case e of (ini Xi � fi)i : B

Γ ⊢ e : {A} Γ, x :: A ⊢ f : L

Γ ⊢ for (x ∈ e) f : L

Apply the inductive hypotheses, using cons when necessary to show that the modified
contexts also satisfy our precondition, for example, ∆,X : A ⊒ Γ, X : A.

Case where the premises strip the context, namely:

⌈Γ⌉ ⊢ e : A

Γ ⊢ [e] : □A

(⌈Γ⌉ ⊢ ei : eq
A)i

Γ ⊢ {ei}i : { eq
A}

(⌈Γ⌉ ⊢ ei : eq
A)i

Γ ⊢ e1 = e2 : bool
⌈Γ⌉ ⊢ e : {1}

Γ ⊢ empty? e : 1+ 1

Then ⌈∆⌉ ⊒ ⌈Γ⌉ by lemma 32, so we apply the inductive hypotheses.

Theorem 21 (Well-typedness of ϕ, δ). If Γ ⊢ e : A, then ϕe and δe have the following types:

ΦΓ ⊢ ϕe : ΦA

□ΦΓ,∆ΦΓ ⊢ δe : ∆ΦA

Proof. By induction on the derivation of Γ ⊢ e : A, although as we’ll see shortly we will need
weakening (theorem 22) in some places.

Lemma 25 (Equality changes). If dx ▷
eq
A x  a � y  b then x = a and y = b.

Proof. By induction on
eq
A, applying the definition from figure 3.6:

Case 1. Trivial.
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Case
eq
A×

eq
B. Then our assumption is equivalent to

(dx1, dx2) ▷
eq
A×

eq
B (x1, x2)  (a1, a2) � (y1, y2)  (b1, b2)

and by unfolding this we have dx1 ▷
eq
A x1 a1 � y1 b1 and dx2 ▷

eq
B x2 a2 � y2 b2,

which by our inductive hypotheses show x1 = a1, y1 = b1 and x2 = a2, y2 = b2,
which suffices.

Case
eq
A1 + eq

A2. Then for some i ∈ {1, 2} our assumption is equivalent to

ini dx ▷
eq
A1+eq

A2
ini x  ini a � ini y  ini b

and by unfolding this we have dx ▷
eq
Ai

x a � y b, which by our inductive hypothesis
implies x = a and y = b, which suffices.

Case {
eq
A}. Then our assumption unfolds to (x, y, x ∪ dx) = (a, b, y), which suffices.

Lemma 26 (Dummy is zero at eqtypes). If x ∈ J
eq
AK then dummy x ▷

eq
A x  x � x  x.

Proof. By induction on
eq
A, applying the definitions of dummy and dummy x ▷

eq
A x x � x x

(figures 3.5 and 3.6).

Case 1. Trivial.

Case
eq
A×

eq
B. Letting x = (y, z), we have dummy x = dummy (y, z) = (dummy y, dummy z).

By our inductive hypotheses, we have dummy y ▷
eq
A y  y � y  y and likewise for z.

By definition this shows that

(dummy y, dummy z) ▷
eq
A×

eq
B (y, z)  (y, z) � (y, z)  (y, z)

as desired.

Case
eq
A1 + eq

A2. Without loss of generality we have x = ini y for some i ∈ {1, 2}. Applying the
definition of dummy we have dummy x = ini (dummy y). By our inductive hypothesis
we have dummy y ▷

eq
Ai

y  y � y  y, which suffices to show

ini (dummy y) ▷
eq
Ai

ini y  ini y � ini y  ini y

as desired.

Case {
eq
A}. Unfolding our theorem’s definition, we need to show that (x, x, x ∪ dummy x) =

(x, x, x), or in other words x = x ∪ dummy{
eq
A} x, which is trivial since dummy{

eq
A} x = {}.
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Lemma 28 (Discrete contexts don’t change). If () ▷⌈Γ⌉ γ  ρ � γ ′  ρ ′ then γ = γ ′ and
ρ = ρ ′.

Proof. All variables in the stripped contexts are discrete, and therefore the logical relation
for discrete variables in contexts, which invokes the logical relation at □ type, requires their
corresponding components be equal.

Lemma 29 (Context stripping). If dγ ▷Γ γ  ρ � γ ′  ρ ′ then

() ▷⌈Γ⌉ stripΦΓ (γ)  stripΓ (ρ) � stripΦΓ (γ
′)  stripΓ (ρ

′)

where stripΓ = ⟨πx⟩x::A∈Γ keeps only the discrete variables from a substitution.

Proof. Immediate from the definitions.

Lemma 33 (Applying box). Given ⌈Γ⌉ ⊢ e : A and γ : JΓK,

J[e]K γ = boxΓ (JeK)(γ) = JeK (stripΓ (γ))

Proof. Recall that the box comonad □’s functorial action, duplication map δA : □A→ □□A,
and distribution dist×□ :

∏
i□Ai → □

∏
i Ai are all no-ops. Then:

J[e]K γ = boxΓ (JeK)(γ) definition of J[e]K
= □JeK(dist×□(δA(γx)x::A∈Γ )) definition of box
= JeK(γx)x::A∈Γ no-ops
= JeK(stripΓ (γ)) definition of strip

Lemma 34 (Correctness of semifix). If g ′ ▷
fix
L→

fix
L g  f � g  f, then semifix (g, g ′) = fix f.

Proof. First, let’s expand our assumption:

(∀dx ▷
fix
L x  a � y  b) g ′ x dx ▷

fix
L g x  f a � g y  f b

If we apply lemma 27 and simplify slightly, this is equivalent to:

(∀x, dx :
fix
L) g x = f x and g (x ∨ dx) = f (x ∨ dx) = g x ∨ g ′ x dx (A.1)

This in particular implies that f = g.
Now, recall that fix f is defined as the limit

∨
i f

i ⊥ of the iterations of f, while semifix (g, g ′)

is the limit
∨

i xi of the sequence xi given by:

x0 = ⊥ xi+1 = xi ∨ dxi

dx0 = g ⊥ dxi+1 = g ′ xi dxi
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Thus it suffices to show that xi = fi ⊥, which we will show inductively, along with xi ∨ dxi =

f xi. To establish the base case, x0 = ⊥ = f0 ⊥ by definition and x0 ∨ dx0 = ⊥ ∨ g ⊥ = f ⊥
because g = f. Inductively assuming that xi = fi ⊥ and xi ∨ dxi = f xi, we have that
xi+1 = xi ∨ dxi = f xi = f (fi ⊥) = fi+1 ⊥ as desired, and finally:

xi+1 ∨ dxi+1 = (xi ∨ dxi) ∨ g ′ xi dxi expanding definitions
= f xi ∨ g ′ xi dxi inductive hypothesis
= g xi ∨ g ′ xi dxi because f = g

= f (xi ∨ dxi) by equation A.1
= f xi+1 definition of xi+1

Theorem 24 (Fundamental property). If Γ ⊢ e : A and dγ ▷Γ γ  ρ � γ ′  ρ ′ then

JδeK (γ, dγ) ▷A JϕeK γ  JeK ρ � JϕeK γ ′  JeK ρ ′

Proof. By induction on the derivation of Γ ⊢ e : A. We will refer to the other premise
dγ ▷Γ γ  ρ � γ ′  ρ ′ as simply “the assumption”.

Case
X : A ∈ Γ

Γ ⊢ X : A
. We wish to show:

JδXK (γ, dγ) ▷A JϕXK γ  JXK ρ � JϕXK γ ′  JXK ρ ′

⇐⇒ JDXK (γ, dγ) ▷A JXK γ  JXK ρ � JXK γ ′  JXK ρ ′

⇐⇒ dγDX ▷A γX  ρX � γ ′
X  ρ ′

X

which follows from the definition of our assumption.

Case
x :: A ∈ Γ

Γ ⊢ x : A
. We wish to show:

JδxK (γ, dγ) ▷A JϕxK γ  JxK ρ � JϕxK γ ′  JxK ρ ′

⇐⇒ JdxK (γ, dγ) ▷A JxK γ  JxK ρ � JxK γ ′  JxK ρ ′

⇐⇒ γdx ▷A γx  ρx � γ ′
x  ρ ′

x

If we apply our assumption we get:

dγ ▷Γ γ  ρ � γ ′  ρ ′

=⇒ () ▷□A (γx, γdx)  ρx � (γ ′
x, γ

′
dx)  ρ ′

x

=⇒ γdx ▷A γx  ρx � γ ′
x  ρ ′

x

as desired.
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Case
Γ, X : A ⊢ e : B

Γ ⊢ λX. e : A→ B
Recall that ϕ(λX. e) = λX. ϕe and δ(λX. e) = λ[x]. λDX. δe. We

wish to show

Jλ[x]. λDX. δeK (γ, dγ) ▷A→B JλX. ϕeK γ  JλX. eK ρ � JλX. ϕeK γ ′  JλX. eK ρ ′

Applying the definition of the logical relation at A → B, it suffices to assume (a)
dx ▷A x  a � y  b and prove

Jλ[x]. λDX. δeK (γ, dγ) x dx ▷B JλX. ϕeK γ x JλX. eK ρ a � JλX. ϕeK γ ′ y JλX. eK ρ ′ b

which, by calculation, is:

JδeK σ ▷B JϕeK (γ, X 7→ x)  JeK (ρ, X 7→ a) � JϕeK (γ, X 7→ y)  JeK (ρ, X 7→ b)

where σ = (γ, dγ, x 7→ x,DX 7→ dx). This follows from our inductive hypothesis if we
can show that:

(dγ,DX 7→ dx) ▷Γ,X:A (γ, X 7→ x)  (ρ, X 7→ a) � (γ ′, X 7→ y)  (ρ ′, X 7→ b)

and this follows from our assumption and (a).

Case
Γ ⊢ e : A→ B Γ ⊢ f : A

Γ ⊢ e f : B
. Recall that ϕ(e f) = ϕe ϕf and δ(e f) = δe [ϕf] δf.

Thus we wish to show:

Jδe [ϕf] δfK (γ, dγ) ▷B Jϕe ϕfK γ  Je fK ρ � Jϕe ϕfK γ ′  Je fK ρ ′

Let:

dx = JδeK (γ, dγ) dy = JδfK (γ, dγ)
x = JϕeK γ a = JeK ρ y = JϕfK γ b = JfK ρ
x ′ = JϕeK γ ′ a ′ = JeK ρ ′ y ′ = JϕfK γ ′ b ′ = JfK ρ ′

By our IH for f we have dy ▷A y  b � y ′  b ′. By this and our IH for e we have
dx y dy ▷B x y  a b � x ′ y ′  a ′ b ′. By calculation, this is equal to what we wish to
show.

Case
Γ ⊢ () : 1

. We wish to show:

J()K (γ, dγ) ▷1 J()K γ  J()K ρ � J()K γ ′  J()K ρ ′

⇐⇒ () ▷1 ()  () � ()  ()

⇐⇒ ⊤
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Case
(Γ ⊢ ei : Ai)i

Γ ⊢ (e1, e2) : A1 ×A2

: Recall thatϕ((e1, e2)) = (ϕe1, ϕe2) and δ((e1, e2)) = (δe1, δe2).

Thus we wish to show:

J(δe1, δe2)K (γ, dγ) ▷A1×A2
J(ϕe1, ϕe2)K γ J(e1, e2)K ρ � J(ϕe1, ϕe2)K γ ′ J(e1, e2)K ρ ′

Since in general J(f1, f2)K σ = (Jf1K σ, Jf2K σ), applying the definition of the LR at
A1 ×A2 this is equivalent to:

(∀i) JδeiK (γ, dγ) ▷Ai
JϕeiK γ  JeiK ρ � JϕeiK γ ′  JeiK ρ ′

which holds by our IH.

Case
Γ ⊢ e : A1 ×A2

Γ ⊢ πi e : Ai

. Recall that ϕ(πi e) = πi ϕe and δ(πi e) = πi δe and observe that

Jπi fK σ = πi(JfK σ). Applying this, what we wish to show is

πi (JδeK (γ, dγ)) ▷Ai
πi (JϕeK γ)  πi (JeK ρ) � πi (JϕeK γ ′)  πi (JeK ρ ′)

which is a direct consequence of our IH.

Case
Γ ⊢ e : Ai

Γ ⊢ ini e : A1 +A2

. Recall that ϕ(ini e) = ini ϕe and δ(ini e) = ini δe. Observe that

in general Jini fK σ = ini (JfK σ) and therefore what we wish to show is equivalent to:

ini (JδeK (γ, dγ)) ▷A1+A2
ini (JϕeK γ)  ini (JeK ρ) � ini (JϕeK γ ′)  ini (JeK ρ ′)

which is by definition equivalent to our inductive hypothesis.

Case
Γ ⊢ ⊥ : L

. Recall that ϕ⊥ = ⊥ and δ⊥ = ⊥ and J⊥K σ = ⊥. Thus it STS ⊥ ▷L

⊥  ⊥ � ⊥  ⊥, which holds by lemma 27.

Case
(Γ ⊢ ei : L)i

Γ ⊢ e1 ∨ e2 : L
. Recall that ϕ(e1 ∨ e2) = ϕe1 ∨ ϕe2. We wish to show:

Jδe1 ∨ δe2K (γ, dγ) ▷L Jϕe1 ∨ ϕe2K γ Je1 ∨ e2K ρ � Jϕe1 ∨ ϕe2K γ ′ Je1 ∨ e2K ρ ′

Let:

dxi = JδeiK (γ, dγ) xi = JϕeiK γ x ′
i = JϕeiK γ ′ ai = JeiK ρ a ′

i = JeiK ρ ′

Since Jf ∨ gK σ = JfK σ ∨ JgK σ, what we wish to show is equivalent to:
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dx1 ∨ dx2 ▷L x1 ∨ x2  a1 ∨ a2 � x ′
1 ∨ x ′

2  a ′
1 ∨ a ′

2

Applying lemma 27 this is equivalent to:

x1 ∨ x2 = a1 ∨ a2 x ′
1 ∨ x ′

2 = a ′
1 ∨ a ′

2 = x1 ∨ x2 ∨ dx1 ∨ dx2

By our IH and assumption and lemma 27 we have:

xi = ai x ′
i = a ′

i = xi ∨ dxi

which suffices by associativity and commutativity of ∨.

Case
(Γ ⊢ ei : eq

A)i

Γ ⊢ {ei}i : { eq
A}

. Recall that ϕ{ei}i = {ϕei}i and δ{ei}i = ⊥. Noting that J⊥K (γ, dγ) =

⊥, by lemma 27 what we want to show is equivalent to:

J{ϕei}iK γ = J{ei}iK ρ = J{ϕei}iK γ ′ = J{ei}iK ρ ′

Note that J{fi}iK σ =
∨

i{boxΓ (JfiK)(σ)} = {JfiK (strip σ)}i. Also observe that by
lemmas 28 and 29 and our assumption, we have

() ▷⌈Γ⌉ strip γ  strip ρ � strip γ ′  strip ρ ′ (A.2)
strip γ = strip γ ′ and strip ρ = strip ρ ′ (A.3)

So applying equation A.3 it suffices to show that {JϕeiK (strip γ)}i = {JeiK (strip ρ)}i,
for which it suffices to show JϕeiK (strip γ) = JeiK (strip ρ). This holds by our IH for
ei and equation A.2 and lemma 25.

Case
(⌈Γ⌉ ⊢ ei : eq

A)i

Γ ⊢ e1 = e2 : bool
. Recall that ϕ(e1 = e2) = ϕe1 = ϕe2 and δ(e1 = e2) = ⊥. Thus

what we wish to show is:

J⊥K (γ, dγ) ▷bool Jϕe1 = ϕe2K γ  Je1 = e2K ρ � Jϕe1 = ϕe2K γ ′  Je1 = e2K ρ ′

Observing that J⊥K (γ, dγ) = ∅ and applying the definition of the logic relation for
bool = {1}, this is equivalent to:

Jϕe1 = ϕe2K γ = Jϕe1 = ϕe2K γ ′ = Je1 = e2K ρ = Je1 = e2K ρ ′

Observe by calculation that

Jf1 = f2K σ =

{
{()} if Jf1K (strip σ) = Jf2K (strip σ)

∅ otherwise
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Thus it suffices to show JϕeiK (strip γ) = JϕeiK (strip γ ′) = JeiK (strip ρ) =

JeiK (strip ρ ′). By our assumption and lemmas 28 and 29 we know strip γ = strip γ ′

and strip ρ = strip ρ ′ and () ▷⌈Γ⌉ strip γ  strip ρ � strip γ ′  strip ρ ′. By the first two
equalities it now suffices to show JϕeiK (strip γ) = JeiK (strip ρ). Applying our IH to
the remaining third proposition we have

JδeiK (strip γ) ▷
eq
A JϕeiK (strip γ)  JeiK (strip ρ) � JϕeiK (strip γ ′)  JeiK (strip ρ ′)

which by lemma 25 implies JϕeiK (strip γ) = JeiK (strip ρ) as desired.

Case
⌈Γ⌉ ⊢ e : {1}

Γ ⊢ empty? e : 1+ 1
. Recall that ϕ(empty? e) = δ(empty? e) = empty? ϕe. Note that

by lemmas 28 and 29 we have strip γ = strip γ ′ and strip ρ = strip ρ ′ and () ▷⌈Γ⌉
strip γ  strip ρ � strip γ ′  strip ρ ′; applying this to our inductive hypothesis and
invoking lemma 25 on the result, we have

JeK (strip ρ) = JeK (strip ρ ′) = JϕeK (strip γ) = JϕeK (strip γ ′)

Thus all are equal to the same value. Now, observe by calculation that

Jempty? fK σ =

{
ini () if JfK (strip σ) = ∅
in2 () otherwise

Thus, there is some i such that Jempty? eK ρ = Jempty? eK ρ ′ = Jempty? ϕeK γ =

Jempty? ϕeK γ ′ = ini () and we have ini () ▷1+1 ini ()  ini () � ini ()  ini () as
desired.

Case
Γ ⊢ e : A1 +A2 (Γ, Xi : Ai ⊢ fi : B)i

Γ ⊢ case e of (ini X � fi)i : B
. Recall that

ϕ(case e of (ini X � fi)i) = case ϕe of (ini X � ϕfi)i

δ(case e of (ini X � fi)i) = case split [ϕe] of
(ini Y � let [x] = Y in

(λDX. δfi)

(case δe of ini DX � DX

ini+1 mod 2 � dummy x))i

Let ρ1 = ρ, ρ2 = ρ ′, γ1 = γ, γ2 = γ ′. By our inductive hypothesis for e there must be
some k ∈ {1, 2} and some dx, xi, ai such that dx ▷Ak

x1  a1 � x2  a2 and:

JeK ρi = ink ai JϕeK γi = ink xi JδeK (γ, dγ) = ink dx
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Applying this and our inductive hypothesis for fk it will suffice to show that:

Jcase e of (ini X � fi)iK ρi = JfkK (ρi, X 7→ ai) (A.4)
Jϕ(case e of (ini X � fi)i)K γi = JϕfkK (γi, X 7→ xi) (A.5)

Jδ(case e of (ini X � fi)i)K (γ, dγ) = JδfkK (γ, dγ, x 7→ x1, DX 7→ dx) (A.6)

Showing this is a matter of calculation. Equations A.4 and A.5 are fairly straightforward
to calculate, so we only show equation A.6 in detail. Before starting, it will be useful to
give some abbreviations for subterms of δ(case e of (ini X � fi)i):

hi = case δe of ini DX � DX; ini+1 mod 2 � dummy x

gi = let [x] = Y in (λDX. δfi) hi

It will also be useful to note the type of ϕe as it occurs in the sub-expression split [ϕe]
being immediately analyzed by δ(case e of (ini X � fi)i); it has been weakened to the
type □ΦΓ ⊢ ϕe : ΦA1 +ΦA2.

Jδ(case e of (ini X � fi)i)K (γ, dγ)
= [JgiK]i (dist×+((γ, dγ), Jsplit [ϕe]K (γ, dγ)))

= [JgiK]i (dist×+((γ, dγ), dist□+(J[ϕe]K (γ, dγ))))

= [JgiK]i (dist×+((γ, dγ), J[ϕe]K (γ, dγ))) dist□+ is the identity
= [JgiK]i (dist×+((γ, dγ), JϕeK (strip□ΦΓ (γ, dγ)))) lemma 33
= [JgiK]i (dist×+((γ, dγ), JeK γ))
= [JgiK]i (dist×+((γ, dγ), ink x1))

= [JgiK]i (ink (γ, dγ, Y 7→ x1))

= JgkK (γ, dγ, Y 7→ x1)

= Jlet [x] = Y in (λDX. δfk) hkK (γ, dγ, Y 7→ x1)

= J(λDX. δfk) hkK (γ, dγ, x 7→ x1)

= J(λDX. δfk)K (γ, dγ, x 7→ x1) (JhkK (γ, dγ, x 7→ x1))

= (dx 7→ JδfkK (γ, dγ, x 7→ x1, DX 7→ dx))

(JhkK (γ, dγ, x 7→ x1))

= JδfkK (γ, dγ, x 7→ x1, DX 7→ (JhkK (γ, dγ, x 7→ x1)))

And therefore it suffices to show that JhkK (γ, dγ, x 7→ x1) = dx. Without loss of
generality, assume k = 1:

Jh1K (γ, dγ, x 7→ x1)

= Jcase δe of in1 DX � DX; in2 � dummy xK (γ, dγ, x 7→ x1)

= [JDXK, Jdummy xK] (distx+((γ, dγ, x 7→ x1), JδeK (γ, dγ, x 7→ x1)))

= [JDXK, Jdummy xK] ((γ, dγ, x 7→ x1), (in1 dx))

= [JDXK, Jdummy xK] (in1 (γ, dγ, x 7→ x1, DX 7→ dx))

= JDXK (γ, dγ, x 7→ x1, DX 7→ dx)

= dx
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Which is what we wished to show.

Case
⌈Γ⌉ ⊢ e : A

Γ ⊢ [e] : □A
, ϕ[e] = [(ϕe, δe)], δ[e] = ().

For brevity, let

γs = stripΦΓ (γ) γ ′
s = stripΓ (γ

′) ρs = stripΦΓ (ρ) ρ ′
s = stripΓ (ρ

′)

By applying lemma 29 to our assumption, we have

() ▷Γ γs  ρs � γ ′
s  ρ ′

s (A.7)

By applying lemma 28 we further know

γs = γ ′
s and ρs = ρ ′

s (A.8)

We wish to show:

J()K (γ, dγ) ▷□A J[(ϕe, δe)]K γ  J[e]K ρ � J[(ϕe, δe)]K γ ′  J[e]K ρ ′

Applying lemma 33 and further simplifying, this is equivalent to:

() ▷□A (JϕeK γs, JδeK γs)  JeK ρs � (JϕeK γs, JδeK γs)  JeK ρs

Applying the definition of the logical relation at □A, this requires that JeK ρs = JeK ρ ′
s

and JϕeK γs = JϕeK γ ′
s and JδeK γs = JδeK γ ′

s, which hold by equation A.8, and that:

JδeK γs ▷A JϕeK γs  JeK ρs � JϕeK γ ′
s  JeK ρ

′
s

which follows from our inductive hypothesis applied to equation A.7.

Case
Γ ⊢ e : □A Γ, x :: A ⊢ f : B

Γ ⊢ let [x] = e in f : B
. Observe that

ϕ(let [x] = e in f) = let [(x, dx)] = ϕe in ϕf

δ(let [x] = e in f) = let [(x, dx)] = ϕe in δf

Further observe that

Jlet [(x, dx)] = ϕe in ϕfK γ = JϕfK (γ, x, dx)

and likewise for δf in place of ϕf and/or γ ′ in place of γ. For brevity, let

x, dx = JϕeK γ x ′, dx ′ = JϕeK γ ′

a = JeK ρ a ′ = JeK ρ ′
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Using this observation and these abbreviations, we have

Jlet [x] = e in fK ρ = JfK (ρ, a)
Jlet [(x, dx)] = ϕe in ϕfK γ = JϕfK (γ, x, dx)
Jlet [(x, dx)] = ϕe in δfK γ = JδfK (γ, x, dx)

and likewise for γ ′, ρ ′. Then what we wish to show is that

JδfK (γ, x, dx) ▷B JϕfK (γ, x, dx)  JfK (ρ, a) � JϕfK (γ ′, x ′, dx ′)  JfK (ρ ′, a ′)

By our inductive hypothesis for f, it suffices to show that

dγ ▷Γ,x::A (γ, x, dx)  (ρ, a) � (γ ′, x ′, dx ′)  (ρ ′, a ′)

Since our assumption tells us that dγ ▷Γ γ  ρ � γ ′  ρ ′, it suffices to show that
() ▷□A (x, dx) a � (x ′, dx ′) a ′, which follows directly from our inductive hypothesis
for e.

Case
Γ ⊢ e : {

eq
A} Γ, x ::

eq
A ⊢ f : L

Γ ⊢ for (x ∈ e) f : L
. Recall that:

ϕ(for (x ∈ e) f) = for (x ∈ ϕe) let [dx] = [0 x] in ϕf

δ(for (x ∈ e) f) = (for (x ∈ δe) let [dx] = [0 x] in ϕf)

∨ (for (x ∈ ϕe ∨ δe) let [dx] = [0 x] in δf)

This case of the proof is quite complex; it will help to have a few abbreviations. First, we
will be considering various definitons which differ only in whether they use the primed
or un-primed versions of γ, ρ, so it will help to refer to these by subscript: γ1 = γ and
γ2 = γ ′ and ρ1 = ρ and ρ2 = ρ ′.

With this in mind, apply lemma 27 to our inductive hypothesis for e:

JδeK (γ1, dγ) ▷{
eq
A} JϕeK γ1  JeK ρ1 � JϕeK γ2  JeK ρ2 (A.9)

⇐⇒ JϕeK γ1 = JeK ρ1 and JϕeK γ2 = JeK ρ2 = JϕeK γ1 ∨ JδeK (γ1, dγ) (A.10)

Moving to our inductive hypothesis for f, for any x ∈ J
eq
AK, let:

ρx
i = (ρi, x 7→ x) γx

i = (γi, x 7→ x, dx 7→ dummy x) dγx = (γx
1, dγ)

By our assumption and lemma 26 we have dγx ▷Γ,x::
eq
A γx

1  ρx
1 � γx

2  ρx
2. From this

and our inductive hypothesis for f, applying lemma 27:

JδfK dγx ▷L JϕfK γx
1  JfK ρ

x
1 � JϕfK γx

2  JfK ρ
x
2 (A.11)

⇐⇒ JϕfK γx
1 = JfK ρx

1 and JϕfK γx
2 = JfK ρx

2 = JϕfK γx
1 ∨ JδfK dγx (A.12)
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We summarize equations A.10 and A.12 as follows, introducing variables si, ds, Fi, dF:

si = JeK ρi = JϕeK γi Fi(x) = JfK ρx
i = JϕfK γx

i (A.13)
ds = JδeK (γ1, dγ) dF(x) = JδfK dγx (A.14)

s1 ∪ ds = s2 F1(x) ∨ dF(x) = F2(x) (A.15)

Now let’s give abbreviations to the denotations about which we are trying to prove
something:

li = Jfor (x ∈ e) fK ρi

mi = Jϕ(for (x ∈ e) f)K γi

dm = Jδ(for (x ∈ e) f)K (γ1, dγ)

Then what we wish to show is that dm ▷L m1  l1 � m2  l2, or equivalently by
applying lemma 27, that m1 = l1 and m2 = l2 = m1 ∨ dm. We will do this by
showing that

li = mi =
∨
x∈si

Fi(x) (A.16)

dm =
( ∨

x∈ds

F1(x)
)
∨

( ∨
x∈s1∪ds

dF(x)
)

(A.17)

from which our result follows because:

m2 =
∨
x∈s2

F2(x)

=
∨

x∈s1∪ds

(F1(x) ∨ dF(x)) equation A.15

=
( ∨

x∈s1

F1(x)
)
∨

( ∨
x∈ds

F1(x)
)
∨

( ∨
x∈s1∪ds

dF(x)
)

reassociate

= m1 ∨ dm

So it suffices to show equations A.16 and A.17. This is mostly a matter of pushing
through denotations. For instance, starting with li:

li = Jfor (x ∈ e) fK ρi

= collect(JfK)(ρi, JeK ρi) definition of Jfor...K

=
∨

x∈JeK ρi

JfK (ρi, x 7→ x) definition of collect

=
∨
x∈si

Fi(x) equation A.13
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And mi:

mi = Jfor (x ∈ ϕe) let [dx] = [0 x] in ϕfK γi

=
∨

x∈JϕeK γi

Jlet [dx] = [0 x] in ϕfK (γi, x 7→ x)

=
∨
x∈si

JϕfK (γi, x 7→ x, dx 7→ J[0 x]K (γi, x 7→ x)) equation A.13

=
∨
x∈si

JϕfK (γi, x 7→ x, dx 7→ J0 xK (strip (γi, x 7→ x))) lemma 33

=
∨
x∈si

JϕfK (γi, x 7→ x, dx 7→ dummy x) pushing definitions

=
∨
x∈si

Fi(x)

And finally, dm. By expanding in the same manner as directly above we have that:

Jfor (x ∈ δe) let [dx] = [0 x] in ϕfK (γ1, dγ) =
∨

x∈ds

F1(x)

Jfor (x ∈ ϕe ∨ δe) let [dx] = [0 x] in δfK (γ1, dγ) =
∨

x∈s1∪ds

dF(x)

And therefore:

dm = Jδ(for (x ∈ e) f)K (γ1, dγ)

= Jfor (x ∈ δe) let [dx] = [0 x] in ϕfK (γ1, dγ)

∨ Jfor (x ∈ ϕe ∨ δe) let [dx] = [0 x] in δfK (γ1, dγ)

=
( ∨

x∈ds

F1(x)
)
∨

( ∨
x∈s1∪ds

dF(x)
)

Which is what we wished to show.

Case
Γ ⊢ e : □(

fix
L→

fix
L)

Γ ⊢ fix e :
fix
L

. Recall that

ϕ(fix e) = semifix ϕe Φ
fix
L =

fix
L (lemma 19)

δ(fix e) = ⊥ ∆Φ
fix
L =

fix
L (lemmas 19 and 20)

For brevity, let

f = JeK ρ f ′ = JeK ρ ′

(g1, g2) = JϕeK γ (g ′
1, g

′
2) = JϕeK γ ′

What we wish to show is:

J⊥K (γ, dγ) ▷
fix
L Jsemifix ϕeK γ  Jfix eK ρ � Jsemifix ϕeK γ ′  Jfix eK ρ ′

⇐⇒ ⊥ ▷
fix
L semifix (JϕeK γ)  fix (JeK ρ) � semifix (JϕeK γ ′)  fix (JeK ρ ′)

⇐⇒ ⊥ ▷
fix
L semifix (g1, g2)  fix f � semifix (g ′

1, g
′
2)  fix f ′

⇐⇒ semifix (g1, g2) = fix f = semifix (g ′
1, g

′
2) = fix f ′ (applying lemma 27)
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By our inductive hypothesis we have JδeK (γ, dγ) ▷□(
fix
L→

fix
L) (g1, g2)  f � (g ′

1, g
′
2)  f ′

and expanding gives us:

f = f ′ and g1 = g ′
1 and g2 = g ′

2 (A.18)
g2 ▷

fix
L→

fix
L g1  f � g ′

1  f ′ (A.19)

Applying equation A.18 reduces our goal to showing semifix (g1, g2) = fix f, which
holds by lemma 34 applied to equations A.18 and A.19.

Case
Γ ⊢ e : □(A1 +A2)

Γ ⊢ split e : □A1 +□A2

. Recall that

ϕ(split e) = let [z] = ϕe in
case split [π1 z] of
(ini Y � let [x] = Y in

case split [π2 z] of
ini DY � let [dx] = DY in ini [(x, dx)]

ini+1 mod 2 � ini [(x, dummy x)])i

δ(split e) = let [y] = ϕe in
case π1 y of (ini � ini ())i∈{1,2}

By unpacking our inductive hypothesis there must be some k ∈ {1, 2} and some dx, x, a
such that dx ▷Ak

x  a � x  a and:

JeK ρ = JeK ρ ′ = ink a JϕeK γ = JϕeK γ ′ = (ink x, ink dx) JδeK (γ, dγ) = ()

Applying the definition of what we wish to show, it therefore suffices to show that:

Jsplit eK ρ = Jsplit eK ρ ′ = ink a (A.20)
Jϕ(split e)K γ = Jϕ(split e)K γ ′ = ink (x, dx) (A.21)

Jδ(split e)K (γ, dγ) = ink () (A.22)

Showing this is a matter of calculation. Equation A.20 is immediate upon noting that
dist□+ = id and therefore Jsplit eK ρ = JeK ρ. The other two are no more difficult but
considerably more tedious, so we omit the details of the calculations.

113



Bibliography

Umut Acar. Self-adjusting Computation. PhD thesis, Carnegie Mellon University, Pittsburgh,
PA 15213, May 2005.

Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functional programming. In
John Launchbury and John C. Mitchell, editors, Conference Record of POPL 2002: The 29th
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Portland, OR, USA,
January 16-18, 2002, pages 247–259. ACM, 2002. doi: 10.1145/503272.503296. URL
https://doi.org/10.1145/503272.503296.

Natasha Alechina, Michael Mendler, Valeria de Paiva, and Eike Ritter. Categorical and Kripke
semantics for constructive S4 modal logic. In Laurent Fribourg, editor, Computer Science
Logic, 15th International Workshop, CSL 2001. 10th Annual Conference of the EACSL, Paris,
France, September 10-13, 2001, Proceedings, volume 2142 of Lecture Notes in Computer
Science, pages 292–307. Springer, 2001. doi: 10.1007/3-540-44802-0_21. URL https:

//doi.org/10.1007/3-540-44802-0_21.

Mario Alvarez-Picallo. Change actions: From incremental computation to discrete derivatives.
PhD thesis, University of Oxford, 2020. URL https://arxiv.org/abs/2002.05256.

Mario Alvarez-Picallo, Alex Eyers-Taylor, Michael Peyton Jones, and C.-H. Luke Ong. Fixing
incremental computation: Derivatives of fixpoints, and the recursive semantics of Datalog.
In Luís Caires, editor, Programming Languages and Systems - 28th European Symposium on
Programming, ESOP 2019, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings,
volume 11423 of Lecture Notes in Computer Science, pages 525–552. Springer, 2019. ISBN
978-3-030-17183-4. doi: 10.1007/978-3-030-17184-1_19. URL https://doi.org/10.

1007/978-3-030-17184-1_19.

Peter Alvaro, William R. Marczak, Neil Conway, Joseph M. Hellerstein, David Maier, and
Russell Sears. Dedalus: Datalog in time and space. In Oege de Moor, Georg Gottlob, Tim
Furche, and Andrew Jon Sellers, editors, Datalog Reloaded - First International Workshop,
Datalog 2010, Oxford, UK, March 16-19, 2010. Revised Selected Papers, volume 6702 of
Lecture Notes in Computer Science, pages 262–281. Springer, 2010. ISBN 978-3-642-
24205-2. doi: 10.1007/978-3-642-24206-9_16. URL http://dx.doi.org/10.1007/

978-3-642-24206-9_16.

Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak. Consistency
analysis in Bloom: a CALM and collected approach. In CIDR 2011, Fifth Biennial Confer-

114

https://doi.org/10.1145/503272.503296
https://doi.org/10.1007/3-540-44802-0_21
https://doi.org/10.1007/3-540-44802-0_21
https://arxiv.org/abs/2002.05256
https://doi.org/10.1007/978-3-030-17184-1_19
https://doi.org/10.1007/978-3-030-17184-1_19
http://dx.doi.org/10.1007/978-3-642-24206-9_16
http://dx.doi.org/10.1007/978-3-642-24206-9_16


ence on Innovative Data Systems Research, Asilomar, CA, USA, January 9-12, 2011, Online
Proceedings, pages 249–260, 2011.

Sergio Antoy and Michael Hanus. Functional logic programming. Communications of the
ACM, 53(4):74–85, April 2010. ISSN 0001-0782.

Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu, Emir Pasalic,
Todd L. Veldhuizen, and Geoffrey Washburn. Design and implementation of the LogicBlox
system. In Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, pages 1371–1382, 2015.

Michael Arntzenius. δ(fix f) = fix (δf (fix f)): or, static differentiation of monotone fixed
points. http://www.rntz.net/files/fixderiv.pdf, May 2017. Accessed: 7 June 2018.

Michael Arntzenius and Neel Krishnaswami. Seminaïve evaluation for a higher-order
functional language. Proc. ACM Program. Lang., 4(POPL):22:1–22:28, 2020. doi:
10.1145/3371090. URL https://doi.org/10.1145/3371090.

Michael Arntzenius and Neelakantan R. Krishnaswami. Datafun: A functional Datalog. In
Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming,
ICFP 2016, pages 214–227, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4219-3. doi:
10.1145/2951913.2951948. URL http://doi.acm.org/10.1145/2951913.2951948.

Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. QL: object-oriented
queries on relational data. In Shriram Krishnamurthi and Benjamin S. Lerner, editors,
30th European Conference on Object-Oriented Programming, ECOOP 2016, July 18-22, 2016,
Rome, Italy, volume 56 of LIPIcs, pages 2:1–2:25. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016. doi: 10.4230/LIPIcs.ECOOP.2016.2. URL https://doi.org/10.4230/

LIPIcs.ECOOP.2016.2.

Roland Carl Backhouse and Paul F. Hoogendijk. Elements of a relational theory of datatypes.
In Bernhard Möller, Helmuth Partsch, and Stephen A. Schuman, editors, Formal Program
Development - IFIP TC2/WG 2.1 State-of-the-Art Report, volume 755 of Lecture Notes in
Computer Science, pages 7–42. Springer, 1993. doi: 10.1007/3-540-57499-9\_15. URL
https://doi.org/10.1007/3-540-57499-9_15.

Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ullman. Magic sets and other
strange ways to implement logic programs (extended abstract). In Proceedings of the Fifth
ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, PODS ’86, pages 1–15,
New York, NY, USA, 1986. ACM. ISBN 0-89791-179-2. doi: 10.1145/6012.15399. URL
http://doi.acm.org/10.1145/6012.15399.

Catriel Beeri and Raghu Ramakrishnan. On the power of magic. In Moshe Y. Vardi, editor,
Proceedings of the Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, March 23-25, 1987, San Diego, California, USA, pages 269–284. ACM, 1987. doi:
10.1145/28659.28689. URL https://doi.org/10.1145/28659.28689.

Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophisticated
points-to analyses. In Shail Arora and Gary T. Leavens, editors, Proceedings of the 24th

115

http://www.rntz.net/files/fixderiv.pdf
https://doi.org/10.1145/3371090
http://doi.acm.org/10.1145/2951913.2951948
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.1007/3-540-57499-9_15
http://doi.acm.org/10.1145/6012.15399
https://doi.org/10.1145/28659.28689


Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA, pages 243–262.
ACM, 2009. doi: 10.1145/1640089.1640108. URL https://doi.org/10.1145/1640089.

1640108.

Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, and Klaus Ostermann. A theory of changes for
higher-order languages: Incrementalizing λ-calculi by static differentiation. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’14, pages 145–155, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2784-8. doi:
10.1145/2594291.2594304. URL http://doi.acm.org/10.1145/2594291.2594304.

Angelos Charalambidis, Konstantinos Handjopoulos, Panagiotis Rondogiannis, and WilliamW.
Wadge. Extensional higher-order logic programming. ACM Trans. Comput. Log., 14(3):
21:1–21:40, 2013. doi: 10.1145/2499937.2499942. URL https://doi.org/10.1145/

2499937.2499942.

James Cheney, Sam Lindley, and Philip Wadler. A practical theory of language-integrated
query. In ACM SIGPLAN International Conference on Functional Programming, ICFP’13,
Boston, MA, USA - September 25 - 27, 2013, pages 403–416, 2013.

James Cheney, Sam Lindley, and Philip Wadler. Query shredding: efficient relational evaluation
of queries over nested multisets. In International Conference on Management of Data,
SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, pages 1027–1038, 2014.

Neil Conway, William R. Marczak, Peter Alvaro, Joseph M. Hellerstein, and David Maier.
Logic and lattices for distributed programming. In Michael J. Carey and Steven Hand,
editors, ACM Symposium on Cloud Computing, SOCC ’12, San Jose, CA, USA, October 14-17,
2012, page 1. ACM, 2012. doi: 10.1145/2391229.2391230. URL https://doi.org/10.

1145/2391229.2391230.

Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of sequen-
tial control and state. Theor. Comput. Sci., 103(2):235–271, September 1992. ISSN
0304-3975. doi: 10.1016/0304-3975(92)90014-7. URL http://dx.doi.org/10.1016/

0304-3975(92)90014-7.

Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov. The Reasoned Schemer. MIT Press,
2005. ISBN 978-0-262-56214-0.

Paolo G. Giarrusso. Optimizing and Incrementalizing Higher-order Collection Queries by
AST Transformation. PhD thesis, University of Tübingen, Germany, 2020. URL https:

//publikationen.uni-tuebingen.de/xmlui/handle/10900/97998/.

Paolo G. Giarrusso, Yann Régis-Gianas, and Philipp Schuster. Incremental λ-calculus in
cache-transfer style: Static memoization by program transformation. In ESOP, volume
11423 of Lecture Notes in Computer Science, pages 553–580. Springer, 2019.

Torsten Grust, Manuel Mayr, Jan Rittinger, and Tom Schreiber. FERRY: database-supported
program execution. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July 2, 2009,
pages 1063–1066, 2009.

116

https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1640089.1640108
http://doi.acm.org/10.1145/2594291.2594304
https://doi.org/10.1145/2499937.2499942
https://doi.org/10.1145/2499937.2499942
https://doi.org/10.1145/2391229.2391230
https://doi.org/10.1145/2391229.2391230
http://dx.doi.org/10.1016/0304-3975(92)90014-7
http://dx.doi.org/10.1016/0304-3975(92)90014-7
https://publikationen.uni-tuebingen.de/xmlui/handle/10900/97998/
https://publikationen.uni-tuebingen.de/xmlui/handle/10900/97998/


Matthew A. Hammer, Yit Phang Khoo, Michael Hicks, and Jeffrey S. Foster. Adapton: compos-
able, demand-driven incremental computation. In Michael F. P. O’Boyle and Keshav Pingali,
editors, ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, pages 156–166. ACM, 2014.
doi: 10.1145/2594291.2594324. URL https://doi.org/10.1145/2594291.2594324.

Rich Hickey, Stuart Halloway, and Justin Gehtland. Datomic: The fully transactional, cloud-
ready, distributed database, 2012. URL http://www.datomic.com. Accessed: 5 July
2019.

Christoph Koch. Incremental query evaluation in a ring of databases. In Jan Paredaens and
Dirk Van Gucht, editors, Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2010, June 6-11, 2010, Indianapolis,
Indiana, USA, pages 87–98. ACM, 2010. doi: 10.1145/1807085.1807100. URL https:

//doi.org/10.1145/1807085.1807100.

Christoph Koch. Incremental query evaluation in a ring of databases. 2013. URL http:

//infoscience.epfl.ch/record/183766. Revised version of PODS 2010 paper.

Vassilis Kountouriotis, Panos Rondogiannis, and William W Wadge. Extensional higher-
order Datalog. In Short Paper Proceedings of the 12th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning (LPAR), pages 1–5. Citeseer, 2005.

Boon Thau Loo, Tyson Condie, Minos N. Garofalakis, David E. Gay, Joseph M. Hellerstein,
Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica. Declarative
networking. Commun. ACM, 52(11):87–95, 2009. doi: 10.1145/1592761.1592785. URL
https://doi.org/10.1145/1592761.1592785.

Magnus Madsen and Ondrej Lhoták. Safe and sound program analysis with Flix. In Frank Tip
and Eric Bodden, editors, Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21, 2018,
pages 38–48. ACM, 2018. doi: 10.1145/3213846.3213847. URL https://doi.org/10.

1145/3213846.3213847.

Magnus Madsen and Ondrej Lhoták. Fixpoints for the masses: programming with first-class
Datalog constraints. Proc. ACM Program. Lang., 4(OOPSLA):125:1–125:28, 2020. doi:
10.1145/3428193. URL https://doi.org/10.1145/3428193.

Magnus Madsen, Ming-Ho Yee, and Ondrej Lhoták. From Datalog to Flix: A declara-
tive language for fixed points on lattices. In Chandra Krintz and Emery Berger, edi-
tors, Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, pages 194–
208. ACM, 2016. ISBN 978-1-4503-4261-2. doi: 10.1145/2908080.2908096. URL
http://doi.acm.org/10.1145/2908080.2908096.

Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. Differential
dataflow. In CIDR 2013, Sixth Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 6-9, 2013, Online Proceedings. www.cidrdb.org, 2013. URL
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper111.pdf.

117

https://doi.org/10.1145/2594291.2594324
http://www.datomic.com
https://doi.org/10.1145/1807085.1807100
https://doi.org/10.1145/1807085.1807100
http://infoscience.epfl.ch/record/183766
http://infoscience.epfl.ch/record/183766
https://doi.org/10.1145/1592761.1592785
https://doi.org/10.1145/3213846.3213847
https://doi.org/10.1145/3213846.3213847
https://doi.org/10.1145/3428193
http://doi.acm.org/10.1145/2908080.2908096
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper111.pdf


Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones. Build systems à la carte: The-
ory and practice. Journal of Functional Programming, 30:e11, 2020. doi: 10.1017/
S0956796820000088.

Atsushi Ohori, Peter Buneman, and Val Breazu-Tannen. Database programming in
Machiavelli—a polymorphic language with static type inference. In Proceedings of the 1989
ACM SIGMOD International Conference on Management of Data, SIGMOD ’89, pages 46–57,
New York, NY, USA, 1989. ACM. ISBN 0-89791-317-5. doi: 10.1145/67544.66931. URL
http://doi.acm.org/10.1145/67544.66931.

Robert Paige and Shaye Koenig. Finite differencing of computable expressions. ACM Trans.
Program. Lang. Syst., 4(3):402–454, 1982. doi: 10.1145/357172.357177. URL https:

//doi.org/10.1145/357172.357177.

Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Mathematical
Structures in Computer Science, 11(4):511–540, 2001. doi: 10.1017/S0960129501003322.
URL http://dx.doi.org/10.1017/S0960129501003322.

Benjamin C. Pierce and David N. Turner. Local type inference. ACM Trans. Program. Lang.
Syst., 22(1):1–44, 2000.

Stuart M. Shieber, Yves Schabes, and Fernando C. N. Pereira. Principles and implementation
of deductive parsing. Journal of Logic Programming, 24(1&2):3–36, 1995.

Yannis Smaragdakis and Martin Bravenboer. Using Datalog for fast and easy program analysis.
In Oege de Moor, Georg Gottlob, Tim Furche, and Andrew Jon Sellers, editors, Datalog
Reloaded - First International Workshop, Datalog 2010, Oxford, UK, March 16-19, 2010.
Revised Selected Papers, volume 6702 of Lecture Notes in Computer Science, pages 245–251.
Springer, 2010. doi: 10.1007/978-3-642-24206-9_14. URL https://doi.org/10.1007/

978-3-642-24206-9_14.

Zoltan Somogyi, Fergus Henderson, and Thomas C. Conway. The implementation of Mercury,
an efficient purely declarative logic programming language. In ILPS 1994, Workshop
4: Implementation Techniques for Logic Programming Languages, Ithaca, New York, USA,
November 17, 1994, 1994.

Terrance Swift and David Scott Warren. XSB: extending prolog with tabled logic programming.
Theory Pract. Log. Program., 12(1-2):157–187, 2012. doi: 10.1017/S1471068411000500.
URL https://doi.org/10.1017/S1471068411000500.

Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus Voelter. Incrementalizing
lattice-based program analyses in Datalog. Proc. ACM Program. Lang., 2(OOPSLA):139:1–
139:29, 2018. doi: 10.1145/3276509. URL https://doi.org/10.1145/3276509.

K. Tuncay Tekle and Yanhong A. Liu. More efficient Datalog queries: subsumptive tabling
beats magic sets. In Timos K. Sellis, Renée J. Miller, Anastasios Kementsietsidis, and Yannis
Velegrakis, editors, Proceedings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011, pages 661–672. ACM, 2011. doi:
10.1145/1989323.1989393. URL https://doi.org/10.1145/1989323.1989393.

118

http://doi.acm.org/10.1145/67544.66931
https://doi.org/10.1145/357172.357177
https://doi.org/10.1145/357172.357177
http://dx.doi.org/10.1017/S0960129501003322
https://doi.org/10.1007/978-3-642-24206-9_14
https://doi.org/10.1007/978-3-642-24206-9_14
https://doi.org/10.1017/S1471068411000500
https://doi.org/10.1145/3276509
https://doi.org/10.1145/1989323.1989393


William W. Wadge. Higher-order Horn logic programming. In Vijay A. Saraswat and Kazunori
Ueda, editors, Logic Programming, Proceedings of the 1991 International Symposium, San
Diego, California, USA, Oct. 28 - Nov 1, 1991, pages 289–303. MIT Press, 1991.

Philip Wadler. Comprehending monads. Mathematical Structures in Computer Science, 2(4):
461–493, 1992.

John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In William Pugh and Craig Chambers, editors, Proceedings of
the ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation
2004, Washington, DC, USA, June 9-11, 2004, pages 131–144. ACM, 2004. doi: 10.1145/
996841.996859. URL https://doi.org/10.1145/996841.996859.

John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. Using Datalog with binary
decision diagrams for program analysis. In Kwangkeun Yi, editor, Programming Languages
and Systems, Third Asian Symposium, APLAS 2005, Tsukuba, Japan, November 2-5, 2005,
Proceedings, volume 3780 of Lecture Notes in Computer Science, pages 97–118. Springer,
2005. doi: 10.1007/11575467_8. URL https://doi.org/10.1007/11575467_8.

Limsoon Wong. Kleisli, a functional query system. J. Funct. Program., 10(1):19–56, 2000.

119

https://doi.org/10.1145/996841.996859
https://doi.org/10.1007/11575467_8

	Introduction
	Monotone fixed points
	Datalog
	Termination and recursion
	Stratified negation

	Datalog for static analysis
	What Datalog can't do
	Functional abstraction
	Semilattices other than set union
	Arithmetic, user-defined functions, and aggregation
	Compound data

	Our goal and strategy

	The Datafun Language
	Syntax sketch
	Examples
	Set operations and relational algebra
	Regular expression combinators
	Regular expression combinators, take two
	CYK parsing
	Dataflow analysis

	Typing and denotational semantics
	Typing rules
	The category Poset and its structures
	Interpretation of Datafun in Poset

	Operational semantics
	A logical relation for termination
	Metatheory of the logical relation
	Proof of the fundamental theorem


	Seminaïve Evaluation
	Seminaïve evaluation as incremental computation
	Change structures for Datafun
	The structure of DeltaPoset
	Products
	Sums
	Exponentials
	Semilattice change structures and seminaïve fixed points
	Fixed points and discreteness comonads

	The phi and delta transforms
	Typing phi and delta
	Fixed points
	Variables, lambda-abstraction, and application
	The discreteness comonad, box
	Case analysis, split, and dummy
	Semilattices and comprehensions
	Leftovers

	Proving the seminaïve transformation correct

	Implementation and Efficiency
	Applying the seminaïve transformation to transitive closure
	Implementation
	The compiler structure
	Compiling transitive closure
	Benchmarking seminaïve evaluation

	Change minimization

	Related Work
	Logic, higher-order abstraction, and semilattices
	Flix

	Incremental computation
	The incremental lambda-calculus
	The monoidal approach to change


	Looking Back and Forward
	Directions forward
	Lessons and surprises
	Successes summarized

	Proofs omitted from main text
	Datafun
	Seminaïve evaluation


